Python中LSTM回归神经网络的时间序列预测

简介: Python中LSTM回归神经网络的时间序列预测

原文链接

这个问题是国际航空乘客预测问题, 数据是1949年1月到1960年12月国际航空公司每个月的乘客数量(单位:千人),共有12年144个月的数据。

链接:https://pan.baidu.com/s/1JJTe2CL0BxpmyewKCsvc0w
提取码:6666

数据趋势:
LSTM1.png

训练程序:

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
from torch import nn
from torch.autograd import Variable


#LSTM(Long Short-Term Memory)是长短期记忆网络
data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
#pandas.read_csv可以读取CSV(逗号分割)文件、文本类型的文件text、log类型到DataFrame
#原有两列,时间和乘客数量,usecols=1:只取了乘客数量一列

plt.plot(data_csv)
plt.show()
#数据预处理
data_csv = data_csv.dropna() #去掉na数据
dataset = data_csv.values      #字典(Dictionary) values():返回字典中的所有值。
dataset = dataset.astype('float32')   #astype(type):实现变量类型转换  
max_value = np.max(dataset)
min_value = np.min(dataset)
scalar = max_value-min_value
dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间
#lambda:定义一个匿名函数,区别于def
#map(f(x),Itera):map()接收函数f和一个list,把函数f依次作用在list的每个元素上,得到一个新的object并返回



'''
接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量,
比如我们希望通过前两个月的流量来预测当月的流量,我们可以将前两个月的流量
当做输入,当月的流量当做输出。同时我们需要将我们的数据集分为训练集和测试
集,通过测试集的效果来测试模型的性能,这里我们简单的将前面几年的数据作为
训练集,后面两年的数据作为测试集。
'''python
def create_dataset(dataset,look_back=2):#look_back 以前的时间步数用作输入变量来预测下一个时间段
    dataX, dataY=[], []
    for i in range(len(dataset) - look_back):
        a = dataset[i:(i+look_back)]  #i和i+1赋值
        dataX.append(a)
        dataY.append(dataset[i+look_back])  #i+2赋值
    return np.array(dataX), np.array(dataY)  #np.array构建数组

data_X, data_Y = create_dataset(dataset)
#data_X: 2*142     data_Y: 1*142

#划分训练集和测试集,70%作为训练集
train_size = int(len(data_X) * 0.7)
test_size = len(data_X)-train_size
 
train_X = data_X[:train_size]
train_Y = data_Y[:train_size]
 
test_X = data_X[train_size:]
test_Y = data_Y[train_size:]
 
train_X = train_X.reshape(-1,1,2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
train_Y = train_Y.reshape(-1,1,1) #输出为1列,每列1个子元素
test_X = test_X.reshape(-1,1,2)
 
 
train_x = torch.from_numpy(train_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
train_y = torch.from_numpy(train_Y)
test_x = torch.from_numpy(test_X)


#定义模型 输入维度input_size是2,因为使用2个月的流量作为输入,隐藏层维度hidden_size可任意指定,这里为4
class lstm_reg(nn.Module):
    def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
        super(lstm_reg,self).__init__()
        #super() 函数是用于调用父类(超类)的一个方法,直接用类名调用父类
        self.rnn = nn.LSTM(input_size,hidden_size,num_layers) #LSTM 网络
        self.reg = nn.Linear(hidden_size,output_size) #Linear 函数继承于nn.Module
    def forward(self,x):   #定义model类的forward函数
        x, _ = self.rnn(x)
        s,b,h = x.shape   #矩阵从外到里的维数
                   #view()函数的功能和reshape类似,用来转换size大小
        x = x.view(s*b, h) #输出变为(s*b)*h的二维
        x = self.reg(x)
        x = x.view(s,b,-1) #卷积的输出从外到里的维数为s,b,一列
        return x

net = lstm_reg(2,4) #input_size=2,hidden_size=4
 
criterion = nn.MSELoss()  #损失函数均方差
optimizer = torch.optim.Adam(net.parameters(),lr=1e-2)
#构造一个优化器对象 Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数
#Adam 算法:params (iterable):可用于迭代优化的参数或者定义参数组的 dicts   lr:学习率


for e in range(10000):
    var_x = Variable(train_x) #转为Variable(变量)
    var_y = Variable(train_y)
 
    out = net(var_x)
    loss = criterion(out, var_y)
 
    optimizer.zero_grad() #把梯度置零,也就是把loss关于weight的导数变成0.
    loss.backward()  #计算得到loss后就要回传损失,这是在训练的时候才会有的操作,测试时候只有forward过程
    optimizer.step() #回传损失过程中会计算梯度,然后optimizer.step()根据这些梯度更新参数
    if (e+1)%100 == 0:
        print('Epoch: {}, Loss:{:.5f}'.format(e+1, loss.data[0]))
        
torch.save(net.state_dict(), 'net_params.pkl') #保存训练文件net_params.pkl
#state_dict 是一个简单的python的字典对象,将每一层与它的对应参数建立映射关系

测试程序:

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import torch 
from torch import nn
from torch.autograd import Variable
 
 
 
data_csv = pd.read_csv('C:/Users/my/Desktop/LSTM/data.csv',usecols=[1])
 
# plt.plot(data_csv)
# plt.show()
#数据预处理

data_csv = data_csv.dropna() #去掉na数据
dataset = data_csv.values #字典(Dictionary) values():返回字典中的所有值。
dataset = dataset.astype('float32') # astype(type):实现变量类型转换  
max_value = np.max(dataset)
min_value = np.min(dataset)
scalar = max_value-min_value
dataset = list(map(lambda x: x/scalar, dataset)) #将数据标准化到0~1之间

def create_dataset(dataset,look_back=2):
    dataX, dataY=[], []
    for i in range(len(dataset)-look_back):
        a=dataset[i:(i+look_back)]
        dataX.append(a)
        dataY.append(dataset[i+look_back])
    return np.array(dataX), np.array(dataY)
 
data_X, data_Y = create_dataset(dataset)


class lstm_reg(nn.Module):
    def __init__(self,input_size,hidden_size, output_size=1,num_layers=2):
        super(lstm_reg,self).__init__()
 
        self.rnn = nn.LSTM(input_size,hidden_size,num_layers)
        self.reg = nn.Linear(hidden_size,output_size)
 
    def forward(self,x):
        x, _ = self.rnn(x)
        s,b,h = x.shape
        x = x.view(s*b, h)
        x = self.reg(x)
        x = x.view(s,b,-1)
        return x
 
 
net = lstm_reg(2,4)

net.load_state_dict(torch.load('net_params.pkl')) 

data_X = data_X.reshape(-1, 1, 2) #reshape中,-1使元素变为一行,然后输出为1列,每列2个子元素
data_X = torch.from_numpy(data_X) #torch.from_numpy(): numpy中的ndarray转化成pytorch中的tensor(张量)
var_data = Variable(data_X) #转为Variable(变量)
pred_test = net(var_data)  #产生预测结果
pred_test = pred_test.view(-1).data.numpy() #view(-1)输出为一行

plt.plot(pred_test, 'r', label='prediction')
plt.plot(dataset, 'b', label='real')
plt.legend(loc='best') #loc显示图像  'best'表示自适应方式
plt.show()

预测结果:

LSTM2.png

学习更多编程知识,请关注我的公众号:

代码的路

相关文章
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
191 80
|
4月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
546 2
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
5月前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
454 1
|
29天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。

热门文章

最新文章