FAQ系列 | MySQL索引之主键索引

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: FAQ系列 | MySQL索引之主键索引

导读

在MySQL里,主键索引和辅助索引分别是什么意思,有什么区别?

上次的分享我们介绍了聚集索引和非聚集索引的区别,本次我们继续介绍主键索引和辅助索引的区别。

1、主键索引

主键索引,简称主键,原文是PRIMARY KEY,由一个或多个列组成,用于唯一性标识数据表中的某一条记录。一个表可以没有主键,但最多只能有一个主键,并且主键值不能包含NULL。

在MySQL中,InnoDB数据表的主键设计我们通常遵循几个原则:

  1. 采用一个没有业务用途的自增属性列作为主键;
  2. 主键字段值总是不更新,只有新增或者删除两种操作;
  3. 不选择会动态更新的类型,比如当前时间戳等。

这么做的好处有几点:

  1. 新增数据时,由于主键值是顺序增长的,innodb page发生分裂的概率降低了;可以参考以往的分享“[MySQL FAQ]系列 — 为什么InnoDB表要建议用自增列做主键”;
  2. 业务数据有变更时,不修改主键值,物理存储位置发生变化的概率降低了,innodb page中产生碎片的概率也降低了。

MyISAM表因为是堆组织表,主键类型设计方面就可以这么讲究了。

2、辅助索引

辅助索引,就是我们常规所指的索引,原文是SECONDARY KEY。辅助索引里还可以再分为唯一索引非唯一索引

唯一索引其实应该叫做唯一性约束,它的作用是避免一列或多列值存在重复,是一种约束性索引。

3、主键索引和辅助索引的区别

在MyISAM引擎中,唯一索引除了key值允许存在NULL外,其余的和主键索引没有本质性区别。也就是说,在MyISAM引擎中,不允许存在NULL值的唯一索引,本质上和主键索引是一回事

而在InnoDB引擎中,主键索引和辅助索引的区别就很大了。主键索引会被选中作为聚集索引,而唯一索引和普通辅助索引间除了唯一性约束外,在存储上没本质区别

从查询性能上来说,在MyISAM表中主键索引和不允许有NULL的唯一索引的查询性能是相当的,InnoDB表通过唯一索引查询则需要多一次从辅助索引到主键索引的转换过程InnoDB表基于普通索引的查找代价更高,因为每次检索到结果后,还需要至少再多检索一次才能确认是否还有更多符合条件的结果,主键索引和唯一索引就不需要这么做了。

经过测试,对100万行数据的MyISAM做随机检索(整数类型),主键和唯一索引的效率基本一样,普通索引的检索效率则慢了30%以上。换成InnoDB表的话,唯一索引比主键索引效率约慢9%,普通索引比主键索引约慢了50%以上。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
295 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
303 155
|
5天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
235 113
|
11天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
813 6