ML之LoR:利用信用卡数据集(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类

简介: ML之LoR:利用信用卡数据集(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类


目录

利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类

设计思路

输出结果

实现代码


 

 

 

利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类

设计思路

 

 

 

输出结果

 

 

 

实现代码

更新……

1. F:\Program Files\Python\Python36\lib\site-packages\matplotlib\axes\_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
2.   warnings.warn("The 'normed' kwarg is deprecated, and has been "
3. 0    284315
4. 1       492
5. Name: Class, dtype: int64
6. Default 方法
7. Undersampling RandomUnderSampler 方法
8. F:\Program Files\Python\Python36\lib\site-packages\imblearn\under_sampling\_prototype_selection\_nearmiss.py:178: UserWarning: The number of the samples to be selected is larger than the number of samples available. The balancing ratio cannot be ensure and all samples will be returned.
9. "The number of the samples to be selected is larger"
10. Undersampling NearMissV1 方法
11. F:\Program Files\Python\Python36\lib\site-packages\sklearn\svm\_base.py:977: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
12. "the number of iterations.", ConvergenceWarning)
13. Undersampling NearMissV2 方法
14. Undersampling NearMissV3 方法
15. Undersampling ClusterCentroids 方法
16. Undersampling TomekLinks 方法
17. Undersampling EditedNearestNeighbours 方法
18. 数据清洗后大类样本数量
19. Original:  227451
20. After Tomek Link:  227429
21. After ENN:  227326
22. Oversampling RandomOverSampler 方法
23. Oversampling SMOTE 方法
24. Oversampling ADASYN 方法

 

 

相关文章
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1211 6
|
11月前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
1004 70
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
机器学习/深度学习 数据采集 算法
Python基于KMeans算法进行文本聚类项目实战
Python基于KMeans算法进行文本聚类项目实战
|
数据采集 机器学习/深度学习 算法
Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化项目实战
Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化项目实战
|
算法 数据挖掘 计算机视觉
程序技术好文:聚类算法一(Kmeans、层次类聚、谱类聚)
程序技术好文:聚类算法一(Kmeans、层次类聚、谱类聚)
231 0
|
存储 算法 Java
Java数据结构与算法:用于高效地存储和检索字符串数据集
Java数据结构与算法:用于高效地存储和检索字符串数据集
|
算法 数据可视化 Python
【KMeans】Python实现KMeans算法及其可视化
【KMeans】Python实现KMeans算法及其可视化
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
260 0

热门文章

最新文章