『MongoDB』MongoDB的数据存储格式Bson比Json有哪些优势?

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 📣读完这篇文章里你能收获到- MongoDB存储数据格式BSON介绍- 使用Bson格式的三大优势

请添加图片描述
📣读完这篇文章里你能收获到

  • MongoDB存储数据格式BSON介绍
  • 使用Bson格式的三大优势

请添加图片描述

一、MongoDB存储数据格式介绍

MongoDB 存储的数据格式与 JSON 十分类似,MongoDB 所采用的数据格式被称为BSON,是一种基于 JSON 的二进制序列化格式,用于 MongoDB 存储文档并进行远程过程调用。

JSON 是一种网络常用的数据格式,具有自描述性。JSON 的数据表示方式易于解析,但支持的数据类型有限。BSON 目前主要用于 MongoDB 中,选择 JSON 进行改造的原因主要是 JSON 的通用性及 JSON 的 schemaless 的特性。

请添加图片描述

二、BSON 格式的优势

更快的遍历速度

BSON 对 JSON 的一个主要的改进是,在 BSON 元素的头部有一个区域用来存储元素的长度, 当遍历时,如果想跳过某个文档进行读取,就可以先读取存储在 BSON 元素头部的元素的长度, 直接 seek 到指定的点上就完成了文档的跳过。

在 JSON 中,要跳过一个文档进行数据读取,需要在对此文档进行扫描的同时匹配数据结构才可以完成跳过操作。

操作更简易

如果要修改 JSON 中的一个值,如将 9 修改为 10,这实际是将一个字符变成了两个,会导致其后面的所有内容都向后移一位。

在 BSON 中,可以指定这个列为整型,那么,当将 9 修正为 10 时,只是在整型范围内将数字进行修改,数据总长不会变化。
需要注意的是:如果数字从整型增大到长整型,还是会导致数据总长增加。

支持更多的数据类型

BSON 在 JSON 的基础上增加了很多额外的类型,BSON 增加了“byte array”数据类型。这使得二进制的存储不再需要先进行 base64 转换再存为 JSON,减少了计算开销。

BSON 支持的数据类型如表所示。
在这里插入图片描述

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
2月前
|
消息中间件 JSON NoSQL
从 ES Kafka Mongodb Restful ... 取到 json 之后
JSON 是一种广泛使用的数据交换格式,但其计算和处理能力有限。esProc SPL 是一款强大的开源计算引擎,能够高效解析 JSON 数据,并支持复杂的过滤、分组、连接等操作。它不仅兼容多种数据源,如 RESTful、ElasticSearch、MongoDB 和 Kafka,还提供了游标对象处理大数据流,支持与 Java 应用无缝集成,实现灵活的业务逻辑处理。
|
8月前
|
JSON NoSQL MongoDB
实时计算 Flink版产品使用合集之要将收集到的 MongoDB 数据映射成 JSON 对象而非按字段分割,该怎么操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
JSON 关系型数据库 MySQL
MySQL JSON数据存储结构与操作
通过本文的介绍,我们了解了MySQL中JSON数据类型的基本操作、常用JSON函数、以及如何通过索引和优化来提高查询性能。JSON数据类型为存储和操作结构化数据提供了灵活性和便利性,在现代数据库应用中具有广泛的应用前景。希望本文对您在MySQL中使用JSON数据类型有所帮助。
284 0
|
5月前
|
存储 监控 NoSQL
震撼!揭秘高可用 MongoDB 分片集群搭建的神秘魔法,开启数据存储的无敌模式!
【8月更文挑战第9天】在数字化时代,数据至关重要。MongoDB作为流行非关系型数据库,通过搭建高可用分片集群确保系统稳定性和性能。分片技术将大数据集分布于多服务器以实现水平扩展。搭建集群需准备服务器资源,配置环境,启动配置服务器、路由服务器及分片服务器,并设置分片策略。例如,对特定数据库和集合启用分片。此架构适用于高流量应用如大型电商平台,确保数据高效处理和高可用性。搭建过程需持续监控和优化,合理规划分片策略以维持系统稳定运行。
44 3
|
5月前
|
Java 前端开发 Spring
技术融合新潮流!Vaadin携手Spring Boot、React、Angular,引领Web开发变革,你准备好了吗?
【8月更文挑战第31天】本文探讨了Vaadin与Spring Boot、React及Angular等主流技术栈的最佳融合实践。Vaadin作为现代Java Web框架,与其他技术栈结合能更好地满足复杂应用需求。文中通过示例代码展示了如何在Spring Boot项目中集成Vaadin,以及如何在Vaadin项目中使用React和Angular组件,充分发挥各技术栈的优势,提升开发效率和用户体验。开发者可根据具体需求选择合适的技术组合。
115 0
|
7月前
|
存储 数据采集 NoSQL
Scrapy与MongoDB的异步数据存储
在数据采集过程中,处理大量的数据请求和存储任务是常见的需求。使用Scrapy来爬取数据并将其存储到MongoDB中是一个高效的解决方案。本文将介绍如何实现一个异步插入MongoDB的Scrapy管道。
|
7月前
|
JSON 分布式计算 DataWorks
MaxCompute产品使用合集之如何将JSON格式数据同步到MongoDB
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
8月前
|
存储 JSON DataWorks
DataWorks产品使用合集之DataWorks将 MongoDB 中的数组类型写入到 DataWorks 的单个字段时,表示为字符串格式而非 JSON 格式如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
86 3
|
30天前
|
存储 JSON NoSQL
学习 MongoDB:打开强大的数据库技术大门
MongoDB 是一个基于分布式文件存储的文档数据库,由 C++ 编写,旨在为 Web 应用提供可扩展的高性能数据存储解决方案。它与 MySQL 类似,但使用文档结构而非表结构。核心概念包括:数据库(Database)、集合(Collection)、文档(Document)和字段(Field)。MongoDB 使用 BSON 格式存储数据,支持多种数据类型,如字符串、整数、数组等,并通过二进制编码实现高效存储和传输。BSON 文档结构类似 JSON,但更紧凑,适合网络传输。
70 15
|
1月前
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板