python数据分析与可视化

简介: python数据分析与可视化

python数据分析与可视化

数据分析初始阶段,通常都要进行可视化处理。数据可视化旨在直观展示信息的分析结果和构思,令某些抽象数据具象化,这些抽象数据包括数据测量单位的性质或数量。本章用的程序库matplotlib是建立在Numpy之上的一个Python图库,它提供了一个面向对象的API和一个过程式类的MATLAB API,他们可以并行使用。
1
1、
import numpy as np
import matplotlib.pyplot as plt
scores=np.random.randint(0,100,50)
plt.hist(scores,bins=8,histtype=‘stepfilled’)
plt.title(‘37’)
plt.show()

2、
x=np.arange(6)
y1=np.array([1,4,3,5,6,7])
y2=np.array([3,4,3,5,6,7])
y3=np.array([2,4,3,5,6,7])
plt.stackplot(x,y1,y2,y3)
plt.title(‘37’)
plt.show()

3、
random_state=np.random.RandomState(1231241)
random_x=random_state.randn(10000)
plt.hist(random_x,bins=25)
plt.title(‘37’)
plt.show()

4、
data=np.array([10,30,15,30,15])
pie_labels=np.array([‘A’,‘B’,‘C’,‘D’,‘E’])
plt.pie(data,radius=1.5,labels=pie_labels,autopct=’%3.1f%%’)
plt.title(‘37’)
plt.show()

5、
import matplotlib as mpl
mpl.rcParams[‘font.sans-serif’]=[‘SimHei’]
mpl.rcParams[‘axes.unicode_minus’]=False
kinds=[‘购物’,‘礼尚往来’,‘餐饮美食’,‘通信’,‘生活日用’,‘交通出行’,‘休闲娱乐’,‘其他’]
money_scale=[500/1500,123/1500,400/1500,234/1500,300/1500,200/1500,100/1500,150/1500]
dev_position=[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]
plt.pie(money_scale,labels=kinds,autopct=’%3.1f%%’,shadow=True,
explode=dev_position,startangle=90)
plt.title(‘37’)
plt.show()

6、
num=50
x=np.random.rand(num)
y=np.random.rand(num)
plt.scatter(x,y)
plt.title(‘37’)
plt.show()

7、
num=50
x=np.random.rand(num)
y=np.random.rand(num)
area=(800np.random.rand(num)*2)
plt.scatter(x,y,s=area)
plt.title(‘37’)
plt.show()

8、
plt.rcParams[‘font.sans-serif’]=‘SimHei’
plt.rcParams[‘axes.unicode_minus’]=False
x_speed=np.arange(10,210,10)
y_distance=np.array([0.3,0.5,1,3,5,5.5,7,8,9,12,14,15.5,17.8,19,20,23,27,30,31,32])
plt.scatter(x_speed,y_distance,s=50,alpha=0.9)
plt.title(‘37’)
plt.show()

9、
plt.rcParams[‘font.family’]= ‘SimHei’
plt.rcParams[‘axes.unicode_minus’]=False
data_2018=np.array([4500,6654.5,5283.4,5107.8,5443.3,5550.6,6400.2,6404.9,5483.1,5330.2,5543,6199.9])
data_2017=np.array([4605.2,4710.3,5168.9,4767.2,4947,5203,6047.4,5945.5,5219.6,5038.1,5196.3,5698.6])
plt.boxplot([data_2018,data_2017],labels=(‘2018年’,‘2017年’),meanline=True,widths=0.5,vert=False,patch_artist=True)
plt.title(‘37’)
plt.show()

10、
plt.rcParams[‘font.family’]= ‘SimHei’
plt.rcParams[‘axes.unicode_minus’]=False
dim_num=6
data=np.array([[0.50,0.32,0.35,0.30,0.30,0.88],
[0.45,0.35,0.30,0.40,0.40,0.30],
[0.43,0.99,0.30,0.28,0.22,0.30],
[0.30,0.25,0.48,0.95,0.45,0.40],
[0.20,0.38,0.87,0.45,0.32,0.28],
[0.34,0.31,0.38,0.40,0.92,0.28]])
angles=np.linspace(0, 2 * np.pi, dim_num, endpoint=False)
angles=np.concatenate((angles,[angles[0]]))
data=np.concatenate((data,[data[0]]))
radar_labels=[‘研究型(I)’,‘艺术型(A)’,‘社会型(S)’,‘企业型(E)’,‘传统型©’,‘现实型®’]
radar_labels=np.concatenate((radar_labels, [radar_labels[0]]))
plt.polar(angles, data)
plt.thetagrids(angles * 180/np.pi, labels=radar_labels)
plt.fill(angles, data, alpha=0.25)
plt.title(‘37’)
plt.show()

11、
data =np.array([20,50,10,15,30,55])
pie_labels=np.array([‘A’,‘B’,‘C’,‘D’,‘E’,‘F’])
plt.pie(data,radius=1.5,wedgeprops={‘width’: 0.7},labels=pie_labels,autopct=’%3.1f%%’,pctdistance=0.75)
plt.title(‘37’)
plt.show()

12、
x = np.arange(1,13)
y_a = np.array([191,123,234,42,123,432,567,234,231,132,123,134])
y_b = np.array([123,143,234,242,523,232,467,334,131,332,234,345])
y_c = np.array([91,123,534,432,223,332,367,434,111,322,345,560])
plt.stackplot(x,y_a,y_b,y_c)
plt.title(‘37’)
plt.show()

目录
相关文章
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
84 3
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
160 4
数据分析的 10 个最佳 Python 库
|
2月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
453 7
|
3月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
122 5
|
3月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
3月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
3月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
3月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案