Python技术知识获取数据并进行可视化(以火锅店为例 六一到了 快带对象去吃火锅吧)
今天六一了 带着对象去吃火锅吧
想吃火锅不知道怎么选,我用python抓取全国火锅店做top10分析
目录
1、数据溯源
1.1 打开地图搜索,可以看到地图上能展示很多店铺数据,那么数据从哪里来的呢?
1.2 网络助手调试
2、编写爬虫程序
2.1 导入相关库
2.2 请求数据
2.3以下为店铺部分数据
3、数据存放到表格
4、数据分析
5、湖南火锅店数量分布
6、全国火锅店数量分布
总结
注意: 本文数据来自于某度
一 数据溯源
1 打开地图搜索,可以看到地图上能展示很多店铺数据,那么数据从哪里来的呢?
2 网络助手调试
打开网络调试助手,可以看到这里面就有对应店铺的数据,数据的传输都是通过这个API来交互的,可以通过爬虫请求这个接口获取需要的数据
二、编写爬虫程序
1 导入相关库
import requests,openpyxl
from numpy import mean
from pyecharts import options as opts
from pyecharts.charts import Map
2 请求数据
下面开始编写请求数据代码(请求时记得带上headers)
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",
'Referer':'https://map.baidu.com/@12949550.923158279,3712445.9716704674,6.28z',
"Cookie":";"你的cookie",
}
url = "https://ditu.baidu.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=s&da_src=searchBox.button&wd=%E7%81%AB%E9%94%85%E5%BA%97&c=158&src=0&wd2=&pn=0&sug=0&l=13&b=(12553849.45,3237935.24;12570777.45,3265551.24)&from=webmap&biz_forward={%22scaler%22:1,%22styles%22:%22pl%22}&sug_forward=&auth=P65Ox7I43B3Ta0COBJTb5D4NVW9RBQ9TuxLETRBxBLLty9iRyki%3DxXwvYgP1PcGCgYvjPuVtvYgPMGvgWv%40uVtvYgPPxRYuVtvYgP%40vYZcvWPCuVtvYgP%40ZPcPPuVtvYgPhPPyheuVtvhgMuxVVtcvY1SGpuTtGKD%3DCCGYuxtE20w5V198P8J9v7u1cv3uxt2dd9dv7uPWv3Guxt58Jv7uPYIUvhgMZSguxzBEHLNRTVtcEWe1aDYyuVt%40ZPuzteL1wWveuxtf0wd0vyMFUSCy7OAupt66FKEu%3D%3D8xX&seckey=vHBTJ4tdi68MW8qWw%2BjU2KFSTFNFo3ItXO6ack3ti8w%3D%2CAp6F2yrR-L11fgqtb_BCcR__vsbaezgdq3dBSEVigT5dYmDiJD8CMaToeS_RfR0pFYByyqzM_Fym7UZvX8dmUA_npbBsJiTpMFwIgVQ5pFQ4nDgupLc5wRg_xqikNzFJMAI55erqBKkbkNQqXfrs9hl6futZVDWgi_jFWBfUDhiNyCGARzZeP0UzmuY9sAJX&device_ratio=1&tn=B_NORMAL_MAP&nn=0&u_loc=12568222,3256533&ie=utf-8&t=1649831407880&newfrom=zhuzhan_webmap"
response = requests.get(url,headers=headers).json()
这里的cookie可以在浏览器network中复制即可。
通过返回的json数据可知道,我们的目标数据在content中,里面是列表数据是店铺资源
(overall_rating是评分,phone是店家电话,price是均价,name是店铺名称)
2.3以下为店铺部分数据
res = session.get(url, headers=headers)
if res.status_code == 200:
items = res.json()
for i in items.get('content')[0:10]:
ext = i.get('ext').get('detail_info')
overall_rating = ext.get('overall_rating')
phone = ext.get('phone')
price = ext.get('price')
name = ext.get('name')
print(overall_rating,phone,price,name)
3、数据存放到表格
work = openpyxl.Workbook()
ws = work.create_sheet(title='省数据', index=0)
ws.append(['评分', '联系方式', '价格', '店名'])
4、数据分析
根据值评分进行排行统计TOP10店铺
5、湖南火锅店数量分布
为了绘制城市的分布图,选择了湖南省为例进行绘制
(如果要绘制全国的所有城市,那样出来的图密密麻麻,不美观)
c2 = (
Map()
.add(f"湖南{wd}店数量各市统计", bb, "湖南")
.set_global_opts(
title_opts=opts.TitleOpts(title=f"湖南{wd}店数量分布"), visualmap_opts=opts.VisualMapOpts()
)
.render(f"湖南{wd}店数量分布.html")
)
return c1,c2
6、全国火锅店数量分布
attr = data['省份'].tolist()
value = data['数量'].tolist()
name = []
for i in attr:
if "省" in i:
name.append(i.replace("省",""))
else:
name.append(i)
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (
Map()
.add("数量", [list(z) for z in zip(name, value)], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="全国火锅店数量分布情况"))
.render("全国火锅店数量分布情况.html")
)