MySQL 8.0 InnoDB压缩行格式性能测试(1)

简介: MySQL 8.0 InnoDB压缩行格式性能测试

1. 背景信息

1. 测试环境

2. 进行测试

2.1 所有数据可以加载到buffer pool中

2.1.1 数据压缩率

2.1.2 TPS相差值

2.1.3 平均延迟差值 avg Latency (ms)

2.1.4 99%延迟差值 99th percentile Latency (ms)

2.2 数据量超过内存ibp容量

2.2.1 数据压缩率

2.2.2 TPS相差值

2.2.3 平均延迟差值 avg Latency (ms)

2.2.4 99%延迟差值 99th percentile Latency (ms)

3. 总结延伸阅读

1. 背景信息

多年前我对InnoDB表压缩格式做了个简单的测试,得到的结论大概是:

按照这个结论,压缩行格式不建议用在TPS较高的OLTP场景,如果有类似的业务需要,可以考虑用TokuDB或RocksDB引擎。

尝试过用TokuDB当做Zabbix的后端数据库,效果还不错,详情见 迁移Zabbix数据库到TokuDB

不过,TokuDB现在已经基本被Percona抛弃了,还有这类业务需求时,可以考虑改用RocksDB引擎,可以参考这篇文章 MyRocks引擎:入坑须知

随着MySQL 8.0.20的发布,我又重燃了对compressed行格式的兴趣,今日就此再做了个简单测试。

1. 测试环境

本次测试的服务器配置是腾讯云"标准型S5"型CVM主机,具体配置是:

配置项 参数
CPU 4 Core(Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz)
内存 16GB
数据盘 500GB SSD云硬盘(理论最大随机IOPS值 16800,实际上最高也只能跑到10000不到)



my.cnf中InnoDB相关配置参数(其余采用默认设置)

innodb_flush_log_at_trx_commit=1
innodb_buffer_pool_size=8G
innodb_log_file_size = 2G



MySQL选用最新的8.0.20版本:

Server version:        8.0.20 MySQL Community Server - GPL

2. 进行测试

本次测试计划分为两种模式

a) 所有数据可以加载到buffer pool中

b) 数据量超过内存ibp容量

针对上述两种模式再分别对dynamic、compressed行格式的区别。

2.1 所有数据可以加载到buffer pool中

相应的sysbench参数如下:

TBLCNT=50 #共50个表

DURING=900 #一次压测900秒(5分钟)
ROWS=100000 #每个表10万行数据
MAXREQ=5000000 #每个线程执行500万次请求

2.1.1 数据压缩率

未压缩格式(KB) 压缩格式(KB) 压缩率(1-压缩格式/未压缩格式)
1638456 1218588 25.63%

2.1.2 TPS相差值


image.png


数值说明:这表示 未压缩格式 相对于 压缩格式的提升比例,例如上图中第一列的 71.11%,表示 在OLTP模式下,并发256线程压测时,未压缩行格式的TPS相对于压缩行格式增加71.11%,下同。

2.1.3 平均延迟差值 avg Latency (ms)


image.png


2.1.4 99%延迟差值 99th percentile Latency (ms)


image.png


根据测试结果的几点结论:

a) 当数据都能放在buffer pool中的时候,是否采用压缩格式对于读的业务场景影响很小。

b) 当数据都能放在buffer pool中的时候,混合OLTP业务场景或者以更新为主的业务场景中,Dynamic行格式明显要比Compressed行格式的性能更好。

综上,当数据量比较小的时候,并且读多写少的业务场景中,可以考虑使用Compressed行格式。而如果是写多读少的业务场景,则最好使用Dynamic行格式。


            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
7天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
285 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
291 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
219 113
|
10天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
763 5