Deepgreen与Greenplum TPC-H性能测试对比(使用德哥脚本)

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: Deepgreen数据库基于开源MPP数据库Greenplum而来,那么他的优越性几何?今天给大家分享数据仓库测试TPC-H的结果让大家加以比较
Deepgreen数据库基于开源MPP数据库Greenplum而来,那么他的优越性几何?今天给大家分享数据仓库测试TPC-H的结果让大家加以比较:
本次对比需要注意的几点:
  1. 测试参照德哥2015年发的【Greenplum的TPC-H】测试,只做了压缩类型的简单修改
  2. 由于测试机器性能问题,可能无法最大化展示二者性能(greenplum部分测试timeout)
一、测试环境:

服务器         IP              节点
Master          192.168.100.107 1 Master
Segment1        192.168.100.108 2 instance
Segment2        192.168.100.109 2 instance
软件版本:
Greenplum 4.3.12
Deepgreen 16.16
二、TPC-H测试结果
Greenplum:
 
2017-05-19 13:59:16 [1495173556] : preparing TPC-H database
2017-05-19 13:59:16 [1495173556] :   loading data
2017-05-19 13:59:39 [1495173579] :   creating primary keys
2017-05-19 13:59:39 [1495173579] :   creating foreign keys
2017-05-19 13:59:39 [1495173579] :   creating indexes
2017-05-19 13:59:57 [1495173597] :   analyzing
2017-05-19 14:00:10 [1495173610] : running TPC-H benchmark
2017-05-19 14:00:10 [1495173610] : running queries defined in TPC-H benchmark
2017-05-19 14:00:10 [1495173610] :   running query 1
2017-05-19 14:00:21 [1495173621] :     query 1 finished OK (6 seconds)
2017-05-19 14:00:21 [1495173621] :   running query 2
2017-05-19 14:08:37 [1495174117] :     query 2 finished OK (250 seconds)
2017-05-19 14:08:37 [1495174117] :   running query 3
2017-05-19 14:53:15 [1495176795] :     query 3 finished OK (1363 seconds)
2017-05-19 14:53:15 [1495176795] :   running query 4
2017-05-19 14:53:17 [1495176797] :     query 4 finished OK (1 seconds)
2017-05-19 14:53:17 [1495176797] :   running query 5
2017-05-19 14:53:18 [1495176798] :     query 5 finished OK (1 seconds)
2017-05-19 14:53:18 [1495176798] :   running query 6
2017-05-19 14:53:19 [1495176799] :     query 6 finished OK (1 seconds)
2017-05-19 14:53:19 [1495176799] :   running query 7
2017-05-19 15:28:32 [1495178912] :     query 7 finished OK (1057 seconds)
2017-05-19 15:28:32 [1495178912] :   running query 8
2017-05-19 15:54:09 [1495180449] :     query 8 finished OK (777 seconds)
2017-05-19 15:54:09 [1495180449] :   running query 9
2017-05-19 21:52:26 [1495201946] :     killing query 9 (timeout)
2017-05-19 21:52:36 [1495201956] :   running query 10
2017-05-19 21:52:37 [1495201957] :     query 10 finished OK (1 seconds)
2017-05-19 21:52:37 [1495201957] :   running query 11
2017-05-19 21:55:26 [1495202126] :     query 11 finished OK (85 seconds)
2017-05-19 21:55:26 [1495202126] :   running query 12
2017-05-19 21:55:27 [1495202127] :     query 12 finished OK (1 seconds)
2017-05-19 21:55:27 [1495202127] :   running query 13
2017-05-20 00:45:29 [1495212329] :     killing query 13 (timeout)
2017-05-20 00:45:39 [1495212339] :   running query 14
2017-05-20 00:45:40 [1495212340] :     query 14 finished OK (1 seconds)
2017-05-20 00:45:40 [1495212340] :   running query 15
2017-05-20 00:45:42 [1495212342] :     query 15 finished OK (1 seconds)
2017-05-20 00:45:42 [1495212342] :   running query 16
2017-05-20 00:48:30 [1495212510] :     query 16 finished OK (84 seconds)
2017-05-20 00:48:30 [1495212510] :   running query 17
2017-05-20 00:48:46 [1495212526] :     query 17 finished OK (8 seconds)
2017-05-20 00:48:46 [1495212526] :   running query 18
2017-05-20 02:06:47 [1495217207] :     killing query 18 (timeout)
2017-05-20 02:06:58 [1495217218] :   running query 19
2017-05-20 07:11:50 [1495235510] :     killing query 19 (timeout)
2017-05-20 07:12:00 [1495235520] :   running query 20
2017-05-20 07:12:02 [1495235522] :     query 20 finished OK (1 seconds)
2017-05-20 07:12:02 [1495235522] :   running query 21
2017-05-20 09:57:36 [1495245456] :     killing query 21 (timeout)
2017-05-20 09:57:46 [1495245466] :   running query 22
2017-05-20 10:12:01 [1495246321] :     query 22 finished OK (428 seconds)
2017-05-20 10:12:01 [1495246321] : finished TPC-H benchmark
Deepgreen:

[dgadmin@linux1 results]$ cat bench.log
2017-05-19 11:44:56 [1495165496] : preparing TPC-H database
2017-05-19 11:44:56 [1495165496] :   loading data
2017-05-19 11:45:14 [1495165514] :   creating primary keys
2017-05-19 11:45:14 [1495165514] :   creating foreign keys
2017-05-19 11:45:14 [1495165514] :   creating indexes
2017-05-19 11:45:29 [1495165529] :   analyzing
2017-05-19 11:45:32 [1495165532] : running TPC-H benchmark
2017-05-19 11:45:32 [1495165532] : running queries defined in TPC-H benchmark
2017-05-19 11:45:32 [1495165532] :   running query 1
2017-05-19 11:45:40 [1495165540] :     query 1 finished OK (4 seconds)
2017-05-19 11:45:40 [1495165540] :   running query 2
2017-05-19 11:52:23 [1495165943] :     query 2 finished OK (199 seconds)
2017-05-19 11:52:23 [1495165943] :   running query 3
2017-05-19 11:52:27 [1495165947] :     query 3 finished OK (3 seconds)
2017-05-19 11:52:27 [1495165947] :   running query 4
2017-05-19 11:52:28 [1495165948] :     query 4 finished OK (1 seconds)
2017-05-19 11:52:28 [1495165948] :   running query 5
2017-05-19 11:52:29 [1495165949] :     query 5 finished OK (1 seconds)
2017-05-19 11:52:29 [1495165949] :   running query 6
2017-05-19 11:52:30 [1495165950] :     query 6 finished OK (1 seconds)
2017-05-19 11:52:30 [1495165950] :   running query 7
2017-05-19 11:52:34 [1495165954] :     query 7 finished OK (3 seconds)
2017-05-19 11:52:34 [1495165954] :   running query 8
2017-05-19 11:52:36 [1495165956] :     query 8 finished OK (1 seconds)
2017-05-19 11:52:36 [1495165956] :   running query 9
2017-05-19 12:26:01 [1495167961] :     query 9 finished OK (1002 seconds)
2017-05-19 12:26:01 [1495167961] :   running query 10
2017-05-19 12:26:02 [1495167962] :     query 10 finished OK (1 seconds)
2017-05-19 12:26:02 [1495167962] :   running query 11
2017-05-19 12:26:05 [1495167965] :     query 11 finished OK (3 seconds)
2017-05-19 12:26:05 [1495167965] :   running query 12
2017-05-19 12:26:07 [1495167967] :     query 12 finished OK (1 seconds)
2017-05-19 12:26:07 [1495167967] :   running query 13
2017-05-19 12:45:19 [1495169119] :     query 13 finished OK (588 seconds)
2017-05-19 12:45:19 [1495169119] :   running query 14
2017-05-19 12:45:20 [1495169120] :     query 14 finished OK (1 seconds)
2017-05-19 12:45:20 [1495169120] :   running query 15
2017-05-19 12:45:21 [1495169121] :     query 15 finished OK (1 seconds)
2017-05-19 12:45:21 [1495169121] :   running query 16
2017-05-19 12:45:25 [1495169125] :     query 16 finished OK (3 seconds)
2017-05-19 12:45:25 [1495169125] :   running query 17
2017-05-19 12:45:30 [1495169130] :     query 17 finished OK (3 seconds)
2017-05-19 12:45:30 [1495169130] :   running query 18
2017-05-19 12:45:32 [1495169132] :     query 18 finished OK (1 seconds)
2017-05-19 12:45:32 [1495169132] :   running query 19
2017-05-19 12:45:34 [1495169134] :     query 19 finished OK (1 seconds)
2017-05-19 12:45:34 [1495169134] :   running query 20
2017-05-19 12:45:35 [1495169135] :     query 20 finished OK (1 seconds)
2017-05-19 12:45:35 [1495169135] :   running query 21
2017-05-19 12:45:36 [1495169136] :     query 21 finished OK (1 seconds)
2017-05-19 12:45:36 [1495169136] :   running query 22
2017-05-19 12:57:30 [1495169850] :     query 22 finished OK (357 seconds)
2017-05-19 12:57:30 [1495169850] : finished TPC-H benchmark

三、结果对比

总的来说,Deepgreen在整个测试中整体优于Greenplum。在22轮测试中,有8轮持平,其余14轮Deepgreen均优于Greenplum。其中Q3、Q7、Q8、Q11、Q16查询比Greenplum快指数倍;Greenplum的Q9、Q13、Q18、Q19、Q21 timeout,而Deepgreen没有;Q4、Q5、Q6、Q10、Q12、Q14、Q15、Q20二者持平。
d2bd8ac17549d3ce91d384d6422c844b068e30cc
8a9741c119a601992c790d88ecb6ce0f0595629b

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
目录
相关文章
|
3月前
|
Java Shell
「sh脚步模版自取」测试线排查的三个脚本:启动、停止、重启、日志保存
「sh脚步模版自取」测试线排查的三个脚本:启动、停止、重启、日志保存
50 1
|
2月前
|
存储 监控 测试技术
测试脚本编写和维护的最佳实践有哪些?
测试脚本编写和维护的最佳实践有哪些?
124 50
|
2月前
|
SQL 测试技术 API
如何编写API接口的自动化测试脚本
本文详细介绍了编写API自动化测试脚本的方法和最佳实践,涵盖确定测试需求、选择测试框架、编写测试脚本(如使用Postman和Python Requests库)、参数化和数据驱动测试、断言和验证、集成CI/CD、生成测试报告及维护更新等内容,旨在帮助开发者构建高效可靠的API测试体系。
|
2月前
|
存储 监控 前端开发
如何确保测试脚本的稳定性和可靠性?
确保测试脚本的稳定性和可靠性是保证性能测试结果准确有效的关键
|
2月前
|
监控 网络协议 Java
一些适合性能测试脚本编写和维护的工具
一些适合性能测试脚本编写和维护的工具
|
2月前
|
测试技术 数据库连接 数据库
测试脚本的编写和维护对性能测试结果有何影响?
测试脚本的编写和维护对性能测试结果有着至关重要的影响,
35 1
|
2月前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
49 1
|
4月前
|
安全 JavaScript 前端开发
自动化测试的魔法:如何用Python编写你的第一个测试脚本
【8月更文挑战第41天】在软件的世界里,质量是王道。而自动化测试,就像是维护这个王国的骑士,确保我们的软件产品坚不可摧。本文将引导你进入自动化测试的奇妙世界,教你如何使用Python这把强大的魔法杖,编写出能够守护你代码安全的第一道防护咒语。让我们一起开启这场魔法之旅吧!
|
5月前
|
存储 算法 Cloud Native
【PolarDB-X列存魔法】揭秘TPC-H测试背后的性能优化秘籍!
【8月更文挑战第25天】阿里巴巴的云原生数据库PolarDB-X以其出色的性能、可靠性和扩展性闻名,在多种业务场景中广泛应用。尤其在列存储模式下,PolarDB-X针对分析型查询进行了优化,显著提升了数据读取效率。本文通过TPC-H基准测试探讨PolarDB-X列存执行计划的优化策略,包括高效数据扫描、专用查询算法以及动态调整执行计划等功能,以满足复杂查询的需求并提高数据分析性能。
129 1
|
4月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:如何用Selenium和Python打造高效测试脚本
【9月更文挑战第13天】在软件开发的海洋中,自动化测试是那抹不可或缺的亮色。它不仅提升了测试效率,还保障了产品质量。本文将带你领略使用Selenium和Python构建自动化测试脚本的魅力所在,从环境的搭建到脚本的编写,再到问题的排查,每一步都是对软件质量把控的深刻理解和实践。让我们开始这段探索之旅,解锁自动化测试的秘密吧!
88 0