【SIGIR 2022】面向长代码序列的Transformer模型优化方法,提升长代码场景性能

简介: 论文主导通过引入稀疏自注意力的方式来提高Transformer模型处理长序列的效率和性能

阿里云机器学习平台PAI与华东师范大学高明教授团队合作在SIGIR2022上发表了结构感知的稀疏注意力Transformer模型SASA,这是面向长代码序列的Transformer模型优化方法,致力于提升长代码场景下的效果和性能。由于self-attention模块的复杂度随序列长度呈次方增长,多数编程预训练语言模型(Programming-based Pretrained Language Models, PPLM)采用序列截断的方式处理代码序列。SASA方法将self-attention的计算稀疏化,同时结合了代码的结构特性,从而提升了长序列任务的性能,也降低了内存和计算复杂度。


论文:Tingting Liu, Chengyu Wang, Cen Chen, Ming Gao, and Aoying Zhou. Understanding Long Programming Languages with Structure-Aware Sparse Attention. SIGIR 2022

模型框架

下图展示了SASA的整体框架:



其中,SASA主要包含两个阶段:预处理阶段和Sparse Transformer训练阶段。在预处理阶段得到两个token之间的交互矩阵,一个是top-k frequency矩阵,一个是AST pattern矩阵。Top-k frequency矩阵是利用代码预训练语言模型在CodeSearchNet语料上学习token之间的attention交互频率,AST pattern矩阵是解析代码的抽象语法树(Abstract Syntax Tree,AST ),根据语法树的连接关系得到token之间的交互信息。Sparse Transformer训练阶段以Transformer Encoder作为基础框架,将full self-attention替换为structure-aware sparse self-attention,在符合特定模式的token pair之间进行attention计算,从而降低计算复杂度。


SASA稀疏注意力一共包括如下四个模块:

  • Sliding window attention:仅在滑动窗口内的token之间计算self-attention,保留局部上下文的特征,计算复杂度为为序列长度,是滑动窗口大小。
  • Global attention:设置一定的global token,这些token将与序列中所有token进行attention计算,从而获取序列的全局信息,计算复杂度为为global token个数。
  • Top-k sparse attention:Transformer模型中的attention交互是稀疏且长尾的,对于每个token,仅与其attention交互最高的top-k个token计算attention,复杂度为
  • AST-aware structure attention:代码不同于自然语言序列,有更强的结构特性,通过将代码解析成抽象语法树(AST),然后根据语法树中的连接关系确定attention计算的范围。


为了适应现代硬件的并行计算特性,我们将序列划分为若干block,而非以token为单位进行计算,每个query block与个滑动窗口blocks和个global blocks以及个top-k和AST blocks计算attention,总体的计算复杂度为为block size。

每个sparse attention pattern 对应一个attention矩阵,以sliding window attention为例,其attention矩阵的计算为:



ASA伪代码:


实验结果

我们采用CodeXGLUE[1]提供的四个任务数据集进行评测,分别为code clone detection,defect detection,code search,code summarization。我们提取其中的序列长度大于512的数据组成长序列数据集,实验结果如下:



从实验结果可以看出,SASA在三个数据集上的性能明显超过所有Baseline。其中Roberta-base[2],CodeBERT[3],GraphCodeBERT[4]是采用截断的方式处理长序列,这将损失一部分的上下文信息。Longformer[5]和BigBird[6]是在自然语言处理中用于处理长序列的方法,但未考虑代码的结构特性,直接迁移到代码任务上效果不佳。


为了验证top-k sparse attention和AST-aware sparse attention模块的效果,我们在BigCloneBench和Defect Detection数据集上做了消融实验,结果如下:

sparse attention模块不仅对于长代码的任务性能有提升,还可以大幅减少显存使用,在同样的设备下,SASA可以设置更大的batch size,而full self-attention的模型则面临out of memory的问题,具体显存使用情况如下图:

SASA作为一个sparse attention的模块,可以迁移到基于Transformer的其他预训练模型上,用于处理长序列的自然语言处理任务,后续将集成到开源框架EasyNLP(https://github.com/alibaba/EasyNLP)中,贡献给开源社区。

论文链接:https://arxiv.org/abs/2205.13730

参考文献

[1] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, Shujie Liu. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation. NeurIPS Datasets and Benchmarks 2021

[2] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019)

[3] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, Ming Zhou. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. EMNLP 2020

[4] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, Ming Zhou. GraphCodeBERT: Pre-training Code Representations with Data Flow. ICLR 2021

[5] Iz Beltagy, Matthew E. Peters, Arman Cohan. Longformer: The Long-Document Transformer. CoRR abs/2004.05150 (2020)

[6] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. Big Bird: Transformers for Longer Sequences. NeurIPS 2020


了解更多精彩内容,欢迎关注我们的阿里灵杰公众号

qrcode_for_gh_0ea952036c3b_344.jpg

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
C++ Python
VS Code按住ctrl不能跳转到定义/函数(Python)
VS Code按住ctrl不能跳转到定义/函数(Python)
4170 0
VS Code按住ctrl不能跳转到定义/函数(Python)
|
6月前
|
人工智能 IDE 开发工具
上新功能!通义灵码行间建议预测 NES 使用方法
通义灵码 AI IDE 已正式上线,即日起用户可在通义灵码官网免费下载开箱即用。
|
9月前
|
人工智能 自然语言处理 安全
Bolt.diy:更灵活更开放的AI全栈开发工具
Bolt.new是一款爆火的AI全栈开发工具,允许用户在浏览器中运行Node.js环境并通过自然语言生成、编辑和部署Web应用。然而,它存在一定的封闭性,仅支持官方指定的大语言模型和Netlify部署。而Bolt.diy作为其开源版本,功能更强大灵活,支持多种大模型选择(如OpenAI、Anthropic等)、丰富的输入方式及多云部署选项(如Vercel、AWS)。此外,Bolt.diy还提供本地文件同步、代码下载到GitHub等功能,适用于快速原型设计、教育与企业级开发等多种场景。
599 1
Bolt.diy:更灵活更开放的AI全栈开发工具
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
LocAgent是由斯坦福大学、耶鲁大学等顶尖机构联合开发的代码定位框架,通过将代码库转化为图结构并利用大语言模型的多跳推理能力,实现精准的问题代码定位。
763 1
用AI精准定位问题代码,调试时间直接砍半!LocAgent:斯坦福开源代码调试神器,多跳推理锁定问题代码
|
6月前
|
人工智能 JSON 数据格式
VTJ 上线 AI 识别 Sketch 和 Figma 设计稿
VTJ的AI助手支持通过识别Sketch和Figma设计稿的元数据,高精度还原设计图。用户可使用官方插件导出json格式的元数据文件。对于Sketch,下载并安装vtj-sketch-plugin后,选中图层导出;Figma则需安装vtj-figma-plugin,通过插件完成元数据导出。最后,在VTJ设计器中上传json文件,借助AI实现设计图的高效还原。
185 0
|
11月前
|
存储 数据可视化 数据挖掘
想提升电商业务效率?这 6 款团队协作软件千万别错过!
在电商旺季,订单量激增,团队需高效协调运营、营销、客服、物流等环节。可视化协作办公软件成为必备工具,提升业务效率与客户满意度。本文推荐6款优秀软件:板栗看板(国产)、Trello、Asana、Wrike、Monday.com和Basecamp。这些软件具备简洁易用的操作界面、强大的可视化功能、定制化任务管理及便捷的跨团队协作,帮助电商团队应对商品上架、促销推广、订单处理等挑战。J人主导的电商公司可根据自身需求选择最适配的工具,实现高效运营与业务增长。
339 16
|
12月前
|
存储 人工智能 运维
大模型训练稳定性思考和实践
本次分享由阿里云智能集团高级技术专家张彭城主讲,聚焦大模型训练的稳定性问题。主要内容分为三部分:1) 大模型训练稳定性的关键挑战,包括大规模同步任务中的故障率高和恢复成本大;2) 阿里云大模型训练稳定性系统的介绍,涵盖健康检测、实时可观测系统及自愈系统;3) 实践分享,探讨集群网络故障定位与修复、性能优化等实际问题的解决方案。通过这些措施,确保大模型训练的高效与稳定。
|
存储 编解码 算法
发到朋友圈的图片为什么会变糊?iPhone的live实况图是什么格式的图片?
本文介绍了iPhone Live实况图的格式(.livp)、社交平台图片变糊的原因、图像编码压缩的基本过程(变换、量化、熵编码),以及HEIF格式及其与HEVC的关系。HEIF格式具有体积小、颜色丰富、内容灵活等优势,适用于高效图像存储与传输。
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。
|
存储 SQL NoSQL
现代数据库技术:从关系型到NoSQL的演进与比较
随着信息技术的飞速发展,数据库技术也在不断演进和创新。本文将探讨现代数据库技术的发展历程,重点比较了传统的关系型数据库和新兴的NoSQL数据库,分析它们在不同场景下的优缺点及应用推荐。

热门文章

最新文章