《Hadoop海量数据处理:技术详解与项目实战(第2版)》一基础篇:Hadoop基础

简介:

本节书摘来异步社区《Hadoop海量数据处理:技术详解与项目实战(第2版)》一书中的基础篇,作者: 范东来 责编: 杨海玲,更多章节内容可以访问云栖社区“异步社区”公众号查看。

基础篇:Hadoop基础

Hadoop海量数据处理:技术详解与项目实战(第2版)
本书的第一部分相当于工具的使用手册,将会介绍Hadoop的核心组件:HDFS、YARN、MapReduce、Hive、Sqoop和HBase,并在此基础上,进一步学习Hadoop性能调优和运维。通过这部分的学习,读者将获得Hadoop工程师的理论基础。

相关文章
|
9月前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
774 1
|
9月前
|
消息中间件 分布式计算 大数据
【大数据技术Hadoop+Spark】Flume、Kafka的简介及安装(图文解释 超详细)
【大数据技术Hadoop+Spark】Flume、Kafka的简介及安装(图文解释 超详细)
426 0
|
9月前
|
Java Shell 分布式数据库
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
173 0
|
9月前
|
SQL 存储 大数据
【大数据技术Hadoop+Spark】Hive基础SQL语法DDL、DML、DQL讲解及演示(附SQL语句)
【大数据技术Hadoop+Spark】Hive基础SQL语法DDL、DML、DQL讲解及演示(附SQL语句)
302 0
|
9月前
|
分布式计算 Java 大数据
【大数据技术Hadoop+Spark】HDFS Shell常用命令及HDFS Java API详解及实战(超详细 附源码)
【大数据技术Hadoop+Spark】HDFS Shell常用命令及HDFS Java API详解及实战(超详细 附源码)
778 0
|
9月前
|
SQL 分布式计算 大数据
【大数据技术Hadoop+Spark】Spark SQL、DataFrame、Dataset的讲解及操作演示(图文解释)
【大数据技术Hadoop+Spark】Spark SQL、DataFrame、Dataset的讲解及操作演示(图文解释)
190 0
|
9月前
|
SQL 存储 分布式计算
【大数据技术Hadoop+Spark】Hive数据仓库架构、优缺点、数据模型介绍(图文解释 超详细)
【大数据技术Hadoop+Spark】Hive数据仓库架构、优缺点、数据模型介绍(图文解释 超详细)
1241 0
|
9月前
|
分布式计算 大数据 Scala
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
376 1
|
9月前
|
存储 分布式计算 负载均衡
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
260 0
|
9月前
|
存储 分布式计算 Hadoop
【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)
【大数据技术Hadoop+Spark】HDFS概念、架构、原理、优缺点讲解(超详细必看)
534 0

相关实验场景

更多