机器学习平台PAI智能标注之文本标注 Quick Start

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 智能标注(iTAG)是机器学习平台PAI上一款智能化数据标注平台,支持图像、文本、视频、音频等多种数据类型的标注以及多模态的混合标注。智能标注(iTAG)提供了丰富的标注内容组件和题目组件,您可以直接使用平台预置的标注模板,也可以根据自己的场景自定义模板进行数据标注。本文以文本标注为例快速演示该功能的使用,以供参考。

Step By Step

  • 1.创建oss bucket,上传预标注文本文件;文件demo参考
  • 2.创建数据集:用于数据标注
  • 3.创建标注任务
  • 4.处理标注任务
  • 5.导出标注结果数据

一.创建oss bucket,上传预标注文本文件

  • 为了便于测试,可以新建一个Bucket,之后将文本demo上传至新建Bucket中
  • :(1)下载的demo文件名称为方便阅读从prelabel_offline.manifest改为了alibaba.manifest
      (2)文件后缀和文件内容格式一定要符合要求,详见创建数据集

10ODYxODlELnBuZw==.png


二.创建数据集:用于数据标注

wLnBuZw==.png


UUzLnBuZw==.png

三.创建标注任务

  • 1.选择数据与模板配置

YyLnBuZw==.png


  • 2.调整预览配置

DM5LnBuZw==.png


  • 3.智能标注配置

RDRjMwLnBuZw==.png


  • 4.分发任务配置

QyRkUyLnBuZw==.png

四.处理标注任务

  • 前往标注页面

LnBuZw==.png


  • 领取标注任务

MUMxNzRBLnBuZw==.png

  • 打标、质检、验收

CNENGLnBuZw==.png


ENBOTgxLnBuZw==.png

五.导出标注结果数据

A3LnBuZw==.png


Tc1QjhDLnBuZw==.png


zOTEzLnBuZw==.png

更多参考

智能标注(iTAG)
阿里云机器学习平台PAI智能标注Quick Start

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
7天前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
25 4
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
利用机器学习进行文本情感分析
【10月更文挑战第4天】本文将介绍如何使用机器学习技术对文本进行情感分析,包括预处理、特征提取、模型训练和结果评估等步骤。我们将使用Python编程语言和scikit-learn库来实现一个简单的情感分析模型,并对模型的性能进行评估。
|
1月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
【10月更文挑战第1天】智能化运维:机器学习在故障预测和自动化响应中的应用
66 3
|
2月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
46 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
如何让你的Uno Platform应用秒变AI大神?从零开始,轻松集成机器学习功能,让应用智能起来,用户惊呼太神奇!
【9月更文挑战第8天】随着技术的发展,人工智能与机器学习已融入日常生活,特别是在移动应用开发中。Uno Platform 是一个强大的框架,支持使用 C# 和 XAML 开发跨平台应用(涵盖 Windows、macOS、iOS、Android 和 Web)。本文探讨如何在 Uno Platform 中集成机器学习功能,通过示例代码展示从模型选择、训练到应用集成的全过程,并介绍如何利用 Onnx Runtime 等库实现在 Uno 平台上的模型运行,最终提升应用智能化水平和用户体验。
51 1
|
3月前
|
机器学习/深度学习 缓存 运维
智能化运维:机器学习在IT管理中的革命性应用
【8月更文挑战第28天】 随着技术的飞速发展,传统的IT运维方式已不能满足现代企业的需求。智能化运维,通过整合机器学习技术,正在重塑我们对IT基础设施的管理方法。本文将探讨智能化运维的概念、实施步骤及其带来的变革,同时分享一些成功案例,以期为读者提供一种全新的视角和思考路径。
59 6
|
3月前
|
图形学 机器学习/深度学习 人工智能
颠覆传统游戏开发,解锁未来娱乐新纪元:深度解析如何运用Unity引擎结合机器学习技术,打造具备自我进化能力的智能游戏角色,彻底改变你的游戏体验——从基础设置到高级应用全面指南
【8月更文挑战第31天】本文探讨了如何在Unity中利用机器学习增强游戏智能。作为领先的游戏开发引擎,Unity通过ML-Agents Toolkit等工具支持AI代理的强化学习训练,使游戏角色能自主学习完成任务。文章提供了一个迷宫游戏示例及其C#脚本,展示了环境观察、动作响应及奖励机制的设计,并介绍了如何设置训练流程。此外,还提到了Unity与其他机器学习框架(如TensorFlow和PyTorch)的集成,以实现更复杂的游戏玩法。通过这些技术,游戏的智能化程度得以显著提升,为玩家带来更丰富的体验。
61 1
|
3月前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
49 1
|
3月前
|
C# 机器学习/深度学习 搜索推荐
WPF与机器学习的完美邂逅:手把手教你打造一个具有智能推荐功能的现代桌面应用——从理论到实践的全方位指南,让你的应用瞬间变得高大上且智能无比
【8月更文挑战第31天】本文详细介绍如何在Windows Presentation Foundation(WPF)应用中集成机器学习功能,以开发具备智能化特性的桌面应用。通过使用Microsoft的ML.NET框架,本文演示了从安装NuGet包、准备数据集、训练推荐系统模型到最终将模型集成到WPF应用中的全过程。具体示例代码展示了如何基于用户行为数据训练模型,并实现实时推荐功能。这为WPF开发者提供了宝贵的实践指导。
41 0
|
3月前
|
机器学习/深度学习 搜索推荐 算法
JSF 与机器学习激情碰撞,开启奇幻智能之旅,颠覆你的 Web 应用想象!
【8月更文挑战第31天】随着AI技术的发展,将机器学习模型整合到各类应用中已成为趋势。本示例展示如何在JavaServer Faces框架中集成机器学习模型,以实现电子商务网站的个性化商品推荐功能。通过使用协同过滤算法并利用Apache Spark MLlib或scikit-learn进行模型训练,再借助Deeplearning4j或Weka实现在JSF中的模型加载与使用,从而提升用户体验。这种方式不仅增强了应用的智能化水平,也为未来模型优化升级提供了可能。
26 0
下一篇
无影云桌面