Python进阶系列(十六)

简介: Python进阶系列(十六)

协程


Python中的协程和生成器很相似但又稍有不同。主要区别在于:

  1. 生成器是数据的生产者
  2. 协程则是数据的消费者

首先我们先来回顾下生成器的创建过程。我们可以这样去创建一个生成器:

def fib():
        a, b = 0, 1
        while True:
            yield a
            a, b = b, a+b
复制代码

然后我们经常在for循环中这样使用它:

for i in fib():
        print i
复制代码

这样做不仅快而且不会给内存带来压力,因为我们所需要的值都是动态生成的而不是将他们存储在一个列表中。更概括的说如果现在我们在上面的例子中使用yield便可获得了一个协程。协程会消费掉发送给它的值。Python实现的grep就是个很好的例子:

def grep(pattern):
        print("Searching for", pattern)
        while True:
            line = (yield)
            if pattern in line:
                print(line)
复制代码

等等!yield返回了什么?啊哈,我们已经把它变成了一个协程。它将不再包含任何初始值,相反要从外部传值给它。我们可以通过send()方法向它传值。这有个例子:

 

search = grep('coroutine')
    next(search)
    #output: Searching for coroutine
    search.send("I love you")
    search.send("Don't you love me?")
    search.send("I love coroutine instead!")
复制代码

output: I love coroutine instead!

发送的值会被yield接收。我们为什么要运行next()方法呢?这样做正是为了启动一个协程。就像协程中包含的生成器并不是立刻执行,而是通过next()方法来响应send()方法。因此,你必须通过next()方法来执行yield表达式。

我们可以通过调用close()方法来关闭一个协程。像这样:

search = grep('coroutine')
    search.close()
复制代码

函数缓存 (Function caching)


函数缓存允许我们将一个函数对于给定参数的返回值缓存起来。

当一个I/O密集的函数被频繁使用相同的参数调用的时候,函数缓存可以节约时间。

在Python 3.2版本以前我们只有写一个自定义的实现。在Python 3.2以后版本,有个lru_cache的装饰器,允许我们将一个函数的返回值快速地缓存或取消缓存。

我们来看看,Python 3.2前后的版本分别如何使用它。

Python 3.2及以后版本

我们来实现一个斐波那契计算器,并使用lru_cache。

from functools import lru_cache
@lru_cache(maxsize=32)
def fib(n):
    if n < 2:
        return n
    return fib(n-1) + fib(n-2)
print([fib(n) for n in range(10)])
复制代码

Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

那个maxsize参数是告诉lru_cache,最多缓存最近多少个返回值。

我们也可以轻松地对返回值清空缓存,通过这样:

fib.cache_clear()


作者:zhulin1028

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章
|
6月前
|
数据采集 网络协议 数据挖掘
网络爬虫进阶之路:深入理解HTTP协议,用Python urllib解锁新技能
【7月更文挑战第30天】网络爬虫是数据分析和信息聚合的关键工具。深入理解HTTP协议及掌握Python的urllib库对于高效爬虫开发至关重要。HTTP协议采用请求/响应模型,具有无状态性、支持多种请求方法和内容协商等特点。
64 3
|
6月前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
【7月更文挑战第25天】在网络技术快速发展的背景下, Python因其简洁的语法和强大的库支持成为学习网络编程的理想选择。
86 5
|
6月前
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
6月前
|
开发者 Python
Python Socket编程:不只是基础,更有进阶秘籍,让你的网络应用飞起来!
【7月更文挑战第25天】在网络应用蓬勃发展的数字时代,Python凭借其简洁的语法和强大的库支持成为开发高效应用的首选。本文通过实时聊天室案例,介绍了Python Socket编程的基础与进阶技巧,包括服务器与客户端的建立、数据交换等基础篇内容,以及使用多线程和异步IO提升性能的进阶篇。基础示例展示了服务器端监听连接请求、接收转发消息,客户端连接服务器并收发消息的过程。进阶部分讨论了如何利用Python的`threading`模块和`asyncio`库来处理多客户端连接,提高应用的并发处理能力和响应速度。掌握这些技能,能使开发者在网络编程领域更加游刃有余,构建出高性能的应用程序。
42 3
|
6月前
|
网络协议 Python
网络世界的建筑师:Python Socket编程基础与进阶,构建你的网络帝国!
【7月更文挑战第26天】在网络的数字宇宙中,Python Socket编程是开启网络世界大门的钥匙。本指南将引领你从基础到实战,成为网络世界的建筑师。
73 2
|
6月前
|
SQL 安全 Go
SQL注入不可怕,XSS也不难防!Python Web安全进阶教程,让你安心做开发!
【7月更文挑战第26天】在 Web 开发中, SQL 注入与 XSS 攻击常令人担忧, 但掌握正确防御策略可化解风险. 对抗 SQL 注入的核心是避免直接拼接用户输入至 SQL 语句. 使用 Python 的参数化查询 (如 sqlite3 库) 和 ORM 框架 (如 Django, SQLAlchemy) 可有效防范. 防范 XSS 攻击需严格过滤及转义用户输入. 利用 Django 模板引擎自动转义功能, 或手动转义及设置内容安全策略 (CSP) 来增强防护. 掌握这些技巧, 让你在 Python Web 开发中更加安心. 安全是个持续学习的过程, 不断提升才能有效保护应用.
65 1
|
6月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
86 4
|
6月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
156 2
|
7月前
|
开发者 Python
Python进阶:深入剖析闭包与装饰器的应用与技巧
Python进阶:深入剖析闭包与装饰器的应用与技巧
|
7月前
|
分布式计算 算法 Python
Python函数进阶:四大高阶函数、匿名函数、枚举、拉链与递归详解
Python函数进阶:四大高阶函数、匿名函数、枚举、拉链与递归详解