用Python分析了5.8w+《觉醒年代》影评,观众都是怎么评价这部通吃高考作文的电视剧?

简介: 大家好,我是志斌~今天《觉醒年代》这部剧可谓是再次冲上热搜,因为它的剧情竟然通吃了许多省市的高考语文作文!这可真是谁看了这部剧,就真的偷偷乐了!

大家好,我是志斌~


今天《觉醒年代》这部剧可谓是再次冲上热搜,因为它的剧情竟然通吃了许多省市的高考语文作文!这可真是谁看了这部剧,就真的偷偷乐了!


志斌上豆瓣上搜了一下这部剧,发现它的评分是9.3分,在打分极其严格的豆瓣上竟然能得9.3分,那这部剧一定是一部非常经典的剧!


38.png


本文通过爬取《觉醒年代》豆瓣短评,进行数据可视化分析,在后台回复【觉醒】即可获得全部代码。


01数据采集


在之前的文章我们已经对豆瓣短评的数据采集有过详细的介绍,有不懂的小伙伴可以看看这篇文章我用python分析《你好,李焕英》豆瓣30万+评论,终于找到了它大卖的原因。这里我们直接展示爬虫核心代码:


for page in range(80):
  try:
      params = (
          ('start', str(page * 20)),
          ('limit', '20'),
          ('status', 'P'),
          ('sort', 'new_score'),
          ('comments_only', '1'),
          ('ck', 'qN8_'),
      )
      r = requests.get('https://movie.douban.com/subject/32493124/comments', headers=headers, params=params, cookies=cookies)
      yonghumingchengs = re.findall('<a title="(.*?)href.*?">', r.json()['html'], re.S)
      youyongshus = re.findall('<span class="votes vote-count">(.*?)</span>', r.json()['html'], re.S)
      pinglunshijians = re.findall('<span class="comment-time " title="(.*?)">', r.json()['html'], re.S)
      pingluns = re.findall('<span class="short">(.*?)</span>', r.json()['html'], re.S)
      for i in range(20):
          a = a + 1
          sheet.append([yonghumingchengs[i], youyongshus[i], pinglunshijians[i].split()[0].split("-")[-1],
                        pinglunshijians[i].split()[1].split(":")[0], pingluns[i]])
      print(f"已爬取完第{page}页数据,存入{i + 1}条数据....")
  except:
      wb.save("全部.xlsx")
      print(f"共爬取{page}页数据,存入{a}条数据....")


02数据清洗


01 合并Excel


因为是分全部、好评、一般、差评四个部分来对影评进行爬取的,所以我们要对这四个影评文件夹进行合并。代码如下:


for i in files:
  wb = openpyxl.load_workbook(i)
  sheet = wb['豆瓣评论']
  for i in range(2,502):
      A_cell = sheet[f'A{i}']
      B_cell = sheet[f'B{i}']
      C_cell = sheet[f'C{i}']
      D_cell = sheet[f'D{i}']
      E_cell = sheet[f'E{i}']
      a = [A_cell.value,int(B_cell.value),int(C_cell.value),int(D_cell.value),E_cell.value]
      sheet_1.append(a)


想要详细了解批量合并Excel的读者可以看看这篇文教你如何快速合并内容相似的Excel文件


02 导入评论数据


用pandas读取合并后的影评数据并预览。


df = pd.read_excel('全部.xlsx',names=['用户名称','点赞数','评论日期','评论时间','评论内容'])
print(df.head())



39.png


查看数据类型


查看字段类型和缺失值情况,符合分析需要,无需另做处理。


df.info()



40.png


03可视化分析


我们现在对爬取的短评数据来进行可视化分析。


01 各类评论占比


41.png


这部剧有5.8w+的短评,竟然好评占到了97%,真不愧是在豆瓣上都能得到9.3分的神剧!没刷的小伙伴,赶紧抽空刷起来!


02 主演提及次数



42.png


这部电视剧中,我选出了六位大家较为熟悉的人物,来看他们的提及次数,其中陈独秀先生的提及次数最多是214,其次是鲁迅先生和李大钊先生,分别是113和111。


这也很符合电视剧的剧情背景,那个年代陈独秀先生、鲁迅先生和李大钊先生的思想确实走在前列!


那让我们来看看大家在影评中都是怎么评价陈独秀先生的。



43.png


各类星级占比



44.png



从图中我们可以看出,有75.3%的观众给这部剧打了5星,19.3%的观众打了4星,打1星和2星的观众加起来才1.7%。这样看来观众是真的十分肯定这部电视剧!


04

评论发表时间分布



45.png


从图中我们可以看出,大部分影评发表时间在21点-次日0点,看来大部分的观众观影时间是在夜晚,可能是因为电视播放在这个时间段的缘故。



04小结


1. 本文仅供学习研究使用,提供的评论仅供参考。

2. 本人对影视的了解有限,言论粗糙,还请勿怪


相关文章
|
6天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
24 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
8天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
3天前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
37 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
3天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
129 36
|
1月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
80 15
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
127 18
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
114 80