用Python分析了7w+《悬崖之上》影评,看看观众都是怎么说?

简介: 五一档的电影已经开播好几天了,要说最为好看的可谓是张艺谋导演《悬崖之上》了,在五一档电影中评分排名第一,并且在昨天综合已经超过《你的婚礼》,排在五一档电影第一名。

大家好,我是志斌~


五一档的电影已经开播好几天了,要说最为好看的可谓是张艺谋导演《悬崖之上》了,在五一档电影中评分排名第一,并且在昨天综合已经超过《你的婚礼》,排在五一档电影第一名。


0.png

虽然总票房还差一点,但是我觉得总票房升上去只是时间问题,毕竟拍片场次那么高。


1.png


本文通过爬取《悬崖之上》豆瓣短评,进行数据可视化分析,在后台回复【悬崖】即可获得全部代码。


01数据采集


在之前的文章我们已经对豆瓣短评的数据采集有过详细的介绍,有不懂的小伙伴可以看看这篇文章我用python分析《你好,李焕英》豆瓣30万+评论,终于找到了它大卖的原因。这里我们直接展示爬虫核心代码:


for page in range(80):
   try:
       params = (
           ('start', str(page * 20)),
           ('limit', '20'),
           ('status', 'P'),
           ('sort', 'new_score'),
           ('comments_only', '1'),
           ('ck', 'qN8_'),
       )
       r = requests.get('https://movie.douban.com/subject/32493124/comments', headers=headers, params=params, cookies=cookies)
       yonghumingchengs = re.findall('<a title="(.*?)href.*?">', r.json()['html'], re.S)
       youyongshus = re.findall('<span class="votes vote-count">(.*?)</span>', r.json()['html'], re.S)
       pinglunshijians = re.findall('<span class="comment-time " title="(.*?)">', r.json()['html'], re.S)
       pingluns = re.findall('<span class="short">(.*?)</span>', r.json()['html'], re.S)
       for i in range(20):
           a = a + 1
           sheet.append([yonghumingchengs[i], youyongshus[i], pinglunshijians[i].split()[0].split("-")[-1],
                         pinglunshijians[i].split()[1].split(":")[0], pingluns[i]])
       print(f"已爬取完第{page}页数据,存入{i + 1}条数据....")
   except:
       wb.save("全部.xlsx")
       print(f"共爬取{page}页数据,存入{a}条数据....")
       ~~~


02数据清洗


01合并Excel


因为是分全部、好评、一般、差评四个部分来对影评进行爬取的,所以我们要对这四个影评文件夹进行合并。代码如下:


for i in files:
   wb = openpyxl.load_workbook(i)
   sheet = wb['豆瓣评论']
   for i in range(2,502):
       A_cell = sheet[f'A{i}']
       B_cell = sheet[f'B{i}']
       C_cell = sheet[f'C{i}']
       D_cell = sheet[f'D{i}']
       E_cell = sheet[f'E{i}']
       a = [A_cell.value,int(B_cell.value),int(C_cell.value),int(D_cell.value),E_cell.value]
       sheet_1.append(a)
       ~~~


02导入评论数据


用pandas读取合并后的影评数据并预览。


df = pd.read_excel('总.xlsx',names=['用户名称','点赞数','评论日期','评论时间','评论内容'])
print(df.head())

2.png



03删除重复数据


df.drop_duplicates()


04查看数据类型


查看字段类型和缺失值情况,符合分析需要,无需另做处理。


df.info()



3.png

03数据可视化


01各类评论占比

4.png


这部电影的短评数有7w+,好评竟能占到快80%,果然张艺谋导演的剧都是好剧~,建议大家抓住五一的小尾巴,去刷一下这个剧。


主演提及次数




5.png


这部影片一共有五个主演,没想到男一张译和女一秦海璐竟然不是被提及次数最多的,反而是刘浩存被提及次数最多,那让我们来看看大家在影评中都是怎么评价她的。



微信图片_20220617102855.png


从词云图中看出,作为新晋的谋女郎,刘浩存确实实力很强,演技很好,同时影片中的角色也很好,可能是这样才导致它的被提及次数成为第一吧。


各类星级占比


6.png



从图中,我们可以明显的看出,打4星的观众最多,占了54%,其次是3星和5星,分别占26%和17%。这样看来,观众还是非常肯定这部影片的。


04论发表时间分布


6.png


从图中,我们可以看出,大部分影评发表时间在晚上和凌晨,白天发表影评的数量很少,影院可以适当增加晚上和凌晨的场次。


03小结


1. 本文仅供学习研究使用,提供的评论仅供参考。

2. 本人对影视的了解有限,言论粗糙,还请勿怪




相关文章
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
132 70
|
6天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
24 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
8天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
3天前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
37 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
152 68
|
3天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
129 36
|
1月前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
80 15
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
127 18
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
55 0