DataFrame(14):对比MySQL学习“Pandas的groupby分组聚合”(超详细)(二)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: DataFrame(14):对比MySQL学习“Pandas的groupby分组聚合”(超详细)(二)

2、groupby分组聚合的原理说明

1)原理图

image.png


2)原理说明

split:按照指定规则分组,由groupby实现;

apply:针对每个小组,使用函数进行操作,得到结果,由agg()函数实现;

combine:将每一组得到的结果,汇总起来,得到最终结果;

注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作;

3、groupby分组对象的相关操作

 我们可以通过groupby方法来对Series或DataFrame对象实现分组操作,该方法会返回一个分组对象。但是,如果直接查看(输出)该对象,并不能看到任何的分组信息。

1)groupby()函数语法

① 语法如下

groupby(by=[“字段1”,“字段2”,…],as_index=True)

② 参数说明

by参数传入的分组字段,当只有一个字段的时候,可以直接写by=“字段1”。当多字段联合分组的时候,就写成列表形式by=[“字段1”,“字段2”]。

as_index参数的使用如图所示

image.png

③ 参数as_index的使用说明

x = {"name":["a","a","b","b","c","c","c"],"num":[2,4,0,5,5,10,15]}
df = pd.DataFrame(x)
display(df)
df.groupby("name",as_index=True).agg({"num":"sum"})
df.groupby("name",as_index=False).agg({"num":"sum"})


结果如下:

image.png


2)groupby分组对象的常用方法或属性。

① groups属性:返回一个字典,key表示组名,value表示这一组中的所有记录;

② size()方法:返回每个分组的记录数;

x = {"name":["a","a","b","b","c","c","c"],"num":[2,4,0,5,5,10,15]}
df = pd.DataFrame(x)
display(df)
df.groupby("deptno").groups
df.groupby("deptno").size()


结果如下:

image.png

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
206 67
|
2月前
|
数据挖掘 数据处理 数据库
Pandas数据聚合:groupby与agg
Pandas库中的`groupby`和`agg`方法是数据分析中不可或缺的工具,用于数据分组与聚合计算。本文从基础概念、常见问题及解决方案等方面详细介绍这两个方法的使用技巧,涵盖单列聚合、多列聚合及自定义聚合函数等内容,并通过代码案例进行说明,帮助读者高效处理数据。
126 32
|
5月前
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
415 0
|
2月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
134 10
|
2月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
61 4
|
3月前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
74 2
Pandas 数据结构 - DataFrame
|
3月前
|
Python
|
5月前
|
数据挖掘 数据处理 Python
Pandas中groupby后的数据排序技巧
Pandas中groupby后的数据排序技巧
298 0
|
5月前
|
数据挖掘 数据处理 Python
Pandas中的数据聚合神器:agg 方法
Pandas中的数据聚合神器:agg 方法
181 0
|
15天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决