测试平台系列(68) 解决数据驱动带来的麻烦

简介: 解决数据驱动带来的麻烦

大家好~我是米洛


我在从0到1打造一个开源平台, 也在编写一套完整的接口测试平台系列教程,希望大家能够多多支持。

回顾


上节内容我们编写好了数据驱动相关的接口,但却有很多困扰随之而来。接着就来说说我们提出这些困扰,并解决之。

问题汇总


由于数据驱动的改造,可能会引发以下几个问题:

  • 原先的执行用例的方式需要变化
    数据驱动以后,我们批量执行case的时候需要带上环境字段了,否则数据驱动没法使用。
  • 原先能够直接调试case,也就是单条case在线执行
    现在由于环境的关系+多数据的情况,我们只能把这块进行调整,让单个case的调试变为单条测试数据的调试。

1.jpg

可以看到现在执行case的时候会提示没有env参数,因为我们支持了数据驱动,必须带上执行环境


  • 执行测试用例逻辑的变化
    之前我们执行测试用例的时候,举个例子: 登录接口,我们是在前置条件里面写好了具体的登录用户名密码。但在数据驱动的情况下,又不一样了。
    我们得把用例里面变化的数据全部抽离出来,其实这么做的目的是为了让数据更灵活,也为了以后能支持数据工厂
    所以这就会导致我们执行case的整套逻辑会发生剧烈变化,让人头大!!!
  • 断言逻辑的改造
    细心的朋友可能会发现,断言部分之前没有很好地支持变量,但现在不一样,我们要根据不同的参数完成不同的断言操作,所以我们也得支持。

迎接挑战


虽然这些挑战比较麻烦,但好在大多是体力活儿。因为以前的逻辑和现在逻辑的区别引发,只要耐心,就能逐一击破。而且之前埋下的坑比如断言变量没替换等等都可以随之解决。

改造报告


  • PityTestResult新增字段
    之前我们编写报告的时候,都是一条case一条数据,那现在有了数据驱动,我们的报告就需要做出一定的改变
    2.jpg


数据驱动的2个核心字段,数据+标识


现在我们需要把数据的标识和数据的内容都写入报告,这样的话在查看报告的时候就能清楚地看到每条数据的执行结果,可以对号入座

  • PityTestResult初始化方法新增字段

3.jpg

image

  • 同理,插入测试结果的时候也要调整

4.jpg

image

  • 查询报告的时候也要相继调整

5.jpg

按照用例id+用例开始执行时间的顺序排列

改造用例执行器


我们之前的执行器有许多不完善的地方,比如不支持断言里面的数据变化,再者只替换了一次数据,而现在我们要做的是什么呢?

每当有新的变量生成,我们都要去寻找变量去替换,这样做虽然显得工作量很重复,但是完整地保证了生成的变量不会漏掉。

  • 编写replace_args方法

6.jpg

要替换的地方有4个,用例,前置条件,后置条件,断言

因为没法度量变量什么时候生成,所以要做的就是每当有新的变量产生就替换变量

  • replace方法

7.jpg

image

可以看到他们都调用了核心方法: replace_cls,也就是替换一个对象,通过属性+值的形式。

我们来看一下replace_cls方法

8.jpg

image

剖析一下: 遍历参数字典,接着去指定的对象字段里面查询是否有这个变量,什么意思呢?假设有这样一个对象:


class Student:
    def __init__(self, name, age):
        self.name = name
        self.age = age

假设此时学生的name和age分别是${student_name}18

我们这边有个参数字典为:


params = {"student_name": "miro"}

很显然,我们要做的效果就是:

  1. 遍历params,此时key=student_name, value=miro
  2. 根据指定的字段: nameage(注意是个列表)
  3. 先找name,发现name的值是${student_name}(我们pity内部约定的变量形式),和student_name吻合,所以我们要把${student_name} 替换为 miro
  4. 调用setattr方法,把student_name替换成它应该变成的值: miro
  5. 由于age字段的值是18,并不是一个变量,所以循环结束

就是上面这个思路,不知道大家有没有看明白。

  • replace_params

这块是变量替换的精髓所在,也是最难弄懂的地方。

9.jpg

这里的request_headers是特殊情况,做的特殊处理

这个方法具体的处理逻辑就是从JSON字符串中找到对应的值,并能支持字段取值。

比如a = '{"human": {"age": 1}}'这个json字符串,如果我们要取到age,我们需要这么写${res.human.age}.

这个方法做到的事情就是,从res获取human,接着获取age,最终返回一个字段,用于替换:

new_data = {"human.age": 1}

完成上述操作,接着就能够从字符串中拿到human.age的值(1)了,从而能够将所有用例产生的变量分配到其他case或者其他数据。

这块之所以有一些改动,是因为我们把response里面的所有数据都改成了字符串,以前比如response可能是字典

改造数据构造器


10.jpg

数据构造器,势必会产生变量,产生变量则要进行一次替换操作(哪怕没产生变量)

run方法改造



async def run(self, env: int, case_id: int, params_pool: dict = None, request_param: dict = None, path="主case"):
        """
        开始执行测试用例
        """
        response_info = dict()
        # 初始化case全局变量, 只存在于case生命周期 注意 它与全局变量不是一套逻辑
        case_params = params_pool
        if case_params is None:
            case_params = dict()
        req_params = request_param
        if req_params is None:
            req_params = dict()
        try:
            case_info, err = await TestCaseDao.async_query_test_case(case_id)
            if err:
                return response_info, err
            response_info["case_name"] = case_info.name
            method = case_info.request_method.upper()
            response_info["request_method"] = method
            # Step1: 替换全局变量
            await self.parse_gconfig(case_info, *Executor.fields)
            self.append("解析全局变量", True)
            # Step2: 获取构造数据
            constructors = await self.get_constructor(case_id)
            # Step3: 获取断言
            asserts, err = await TestCaseAssertsDao.async_list_test_case_asserts(case_id)
            if err:
                return response_info, err
            # Step4: 替换参数
            self.replace_args(req_params, case_info, constructors, asserts)
            # Step5: 执行构造方法
            await self.execute_constructors(env, path, case_info, case_params, req_params, constructors, asserts)
            response_info["url"] = case_info.url
            # Step6: 获取后置操作
            # TODO
            # Step7: 批量改写主方法参数
            await self.parse_params(case_info, case_params)
            if case_info.request_headers != "":
                headers = json.loads(case_info.request_headers)
            else:
                headers = dict()
            if "Content-Type" not in headers:
                headers['Content-Type'] = "application/json; charset=UTF-8"
            if case_info.body != '':
                body = case_info.body
            else:
                body = None
            # Step5: 替换请求参数
            body = self.replace_body(request_param, body)
            # Step6: 完成http请求
            if "form" not in headers['Content-Type']:
                request_obj = AsyncRequest(case_info.url, headers=headers,
                                           data=body.encode() if body is not None else body)
            else:
                if body is not None:
                    body = json.loads(body)
                request_obj = AsyncRequest(case_info.url, headers=headers, data=body)
            res = await request_obj.invoke(method)
            self.append(f"http请求过程\n\nRequest Method: {case_info.request_method}\n\n"
                        f"Request Headers:\n{headers}\n\nUrl: {case_info.url}"
                        f"\n\nBody:\n{body}\n\nResponse:\n{res.get('response', '未获取到返回值')}")
            response_info.update(res)
            # 执行完成进行断言
            asserts, ans = self.my_assert(asserts, response_info)
            response_info["asserts"] = asserts
            # 日志输出, 如果不是开头用例则不记录
            if self._main:
                response_info["logs"] = self.logger.join()
            response_info["status"] = ans
            return response_info, None
        except Exception as e:
            Executor.log.error(f"执行用例失败: {str(e)}")
            self.append(f"执行用例失败: {str(e)}")
            if self._main:
                response_info["logs"] = self.logger.join()
            return response_info, f"执行用例失败: {str(e)}"

方法比较长,我就直接贴代码了。改造点主要有以下几处:

  1. 新增env参数
  2. replace_args替换掉replace_params
  3. 打印完整的http请求
  4. 在执行异常的时候,返回尽可能多的信息

改造执行方法


11.jpg

image

在执行之前呢,先获取这个case在对应环境的测试数据,然后将数据解析为json.

接着就是用异步的方式,挨个儿执行。

其他的比如批量执行,也和这个细节差不多,因为篇幅的问题就不讲了。



相关文章
|
16天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
24 6
|
18天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
24 1
|
22天前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
1月前
|
监控 安全 测试技术
构建高效的精准测试平台:设计与实现指南
在软件开发过程中,精准测试是确保产品质量和性能的关键环节。一个精准的测试平台能够自动化测试流程,提高测试效率,缩短测试周期,并提供准确的测试结果。本文将分享如何设计和实现一个精准测试平台,从需求分析到技术选型,再到具体的实现步骤。
108 1
|
2月前
|
人工智能 监控 测试技术
云应用开发平台测试
云应用开发平台测试
66 2
|
2月前
|
存储 测试技术 数据库
数据驱动测试和关键词驱动测试的区别
数据驱动测试 数据驱动测试或 DDT 也被称为参数化测试。
34 1
|
1月前
|
监控 安全 测试技术
构建高效精准测试平台:设计与实现全攻略
在软件开发过程中,精准测试是确保产品质量的关键环节。一个高效、精准的测试平台能够自动化测试流程,提高测试覆盖率,缩短测试周期。本文将分享如何设计和实现一个精准测试平台,从需求分析到技术选型,再到具体的实现步骤。
53 0
|
2月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
471 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
128 0
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
62 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)