【k8s系列2】spark on k8s(kubernetes) DynamicResourceAllocation(DRA)

简介: 【k8s系列2】spark on k8s(kubernetes) DynamicResourceAllocation(DRA)
 随着大数据时代的到来,以及kubernetes的愈发火热,好多公司已经把spark应用从yarn迁移到k8s,当然也踩了不少的坑,    
 现在我们来分析一下spark on k8s的DynamicResourceAllocation这个坑

spark on yarn 中的DynamicResourceAllocation


spark on yarn对于DynamicResourceAllocation分配来说,从spark 1.2版本就已经开始支持了.

对于spark熟悉的人都知道,如果我们要开启DynamicResourceAllocation,就得有ExternalShuffleService服务,

对于yarn来说ExternalShuffleService是作为辅助服务开启的,具体配置如下:

<property>
   <name>yarn.nodemanager.aux-services</name>
   <value>spark_shuffle</value>
</property>
<property>
   <name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
   <value>org.apache.spark.network.yarn.YarnShuffleService</value>
</property>
<property>
   <name>spark.shuffle.service.port</name>
   <value>7337</value>
</property>

重启nodeManager,这样在每个nodeManager节点就会启动一个YarnShuffleService,之后在spark应用中设置spark.dynamicAllocation.enabled 为true,这样就能达到运行时资源动态分配的效果


我们直接从CoarseGrainedExecutorBackend中SparkEnv创建开始说,每一个executor的启动,必然会经过CoarseGrainedExecutorBackend main方法,而main中就涉及到SparkEnv的创建

 val env = SparkEnv.createExecutorEnv(driverConf, arguments.executorId, arguments.bindAddress,
       arguments.hostname, arguments.cores, cfg.ioEncryptionKey, isLocal = false)

而sparkEnv的创建就涉及到BlockManager的创建。沿着代码往下走,最终

val blockTransferService =
     new NettyBlockTransferService(conf, securityManager, bindAddress, advertiseAddress,
       blockManagerPort, numUsableCores, blockManagerMaster.driverEndpoint)
val blockManager = new BlockManager(
     executorId,
     rpcEnv,
     blockManagerMaster,
     serializerManager,
     conf,
     memoryManager,
     mapOutputTracker,
     shuffleManager,
     blockTransferService,
     securityManager,
     externalShuffleClient)

在blockManager的initialize方法中,就会进行registerWithExternalShuffleServer

 // Register Executors' configuration with the local shuffle service, if one should exist.
   if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
     registerWithExternalShuffleServer()
   }

如果我们开启了ExternalShuffleService,对于yarn就是YarnShuffleService,就会把当前的ExecutorShuffleInfo注册到host为shuffleServerId.host, port为shuffleServerId.port的ExternalShuffleService中,ExecutorShuffleInfo的信息如下:

val shuffleConfig = new ExecutorShuffleInfo(
     diskBlockManager.localDirsString,
     diskBlockManager.subDirsPerLocalDir,
     shuffleManager.getClass.getName)

这里我重点分析一下registerWithExternalShuffleServer的方法中的以下片段

// Synchronous and will throw an exception if we cannot connect.
       blockStoreClient.asInstanceOf[ExternalBlockStoreClient].registerWithShuffleServer(
         shuffleServerId.host, shuffleServerId.port, shuffleServerId.executorId, shuffleConfig)            

该代码中shuffleServerId来自于:

shuffleServerId = if (externalShuffleServiceEnabled) {
     logInfo(s"external shuffle service port = $externalShuffleServicePort")
     BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
   } else {
     blockManagerId
   }

而blockTransferService.hostName 是我们在SparkEnv中创建的时候由advertiseAddress传过来的,

最终由CoarseGrainedExecutorBackend 主类参数hostname过来的,那到底怎么传过来的呢?

参照ExecutorRunnable的prepareCommand方法,

val commands = prefixEnv ++
     Seq(Environment.JAVA_HOME.$$() + "/bin/java", "-server") ++
     javaOpts ++
     Seq("org.apache.spark.executor.YarnCoarseGrainedExecutorBackend",
       "--driver-url", masterAddress,
       "--executor-id", executorId,
       "--hostname", hostname,
       "--cores", executorCores.toString,
       "--app-id", appId,
       "--resourceProfileId", resourceProfileId.toString) ++

而这个hostname的值最终由YarnAllocator的方法runAllocatedContainers

val executorHostname = container.getNodeId.getHost

传递过来的,也就是说我们最终获取到了yarn节点,也就是nodeManager的host

这样每个启动的executor,就向executor所在的nodeManager的YarnShuffleService注册了ExecutorShuffleInfo信息,这样对于开启了动态资源分配的

ExternalBlockStoreClient 来说fetchBlocksg过程就和未开启动态资源分配的NettyBlockTransferService大同小异了


spark on k8s(kubernetes) 中的DynamicResourceAllocation


参考之前的文章,我们知道在entrypoint中我们在启动executor的时候,我们传递了hostname参数

executor)
    shift 1
    CMD=(
      ${JAVA_HOME}/bin/java
      "${SPARK_EXECUTOR_JAVA_OPTS[@]}"
      -Xms$SPARK_EXECUTOR_MEMORY
      -Xmx$SPARK_EXECUTOR_MEMORY
      -cp "$SPARK_CLASSPATH:$SPARK_DIST_CLASSPATH"
      org.apache.spark.executor.CoarseGrainedExecutorBackend
      --driver-url $SPARK_DRIVER_URL
      --executor-id $SPARK_EXECUTOR_ID
      --cores $SPARK_EXECUTOR_CORES
      --app-id $SPARK_APPLICATION_ID
      --hostname $SPARK_EXECUTOR_POD_IP
    )

而SPARK_EXECUTOR_POD_IP是运行中的POD IP,参考BasicExecutorFeatureStep类片段:

Seq(new EnvVarBuilder()
          .withName(ENV_EXECUTOR_POD_IP)
          .withValueFrom(new EnvVarSourceBuilder()
            .withNewFieldRef("v1", "status.podIP")
            .build())
          .build())

这样按照以上流程的分析,即使我们在每个k8s节点开启ExternalShuffleService服务,且pod挂载了持久化盘,

executor也不能向k8s节点ExternalShuffleService服务注册,因为我们注册的节点是POD IP,而不是节点IP,

当然spark社区早就提出了未开启external shuffle service的动态资源分配,且已经合并到master分支.

具体配置,可以参照如下:

spark.dynamicAllocation.enabled  true 
spark.dynamicAllocation.shuffleTracking.enabled  true
spark.dynamicAllocation.minExecutors  1
spark.dynamicAllocation.maxExecutors  4
spark.dynamicAllocation.executorIdleTimeout  60s
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
11天前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
66 19
|
21天前
|
Kubernetes 应用服务中间件 nginx
二进制安装Kubernetes(k8s)v1.32.0
本指南提供了一个详细的步骤,用于在Linux系统上通过二进制文件安装Kubernetes(k8s)v1.32.0,支持IPv4+IPv6双栈。具体步骤包括环境准备、系统配置、组件安装和配置等。
201 10
|
25天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
2月前
|
Kubernetes Cloud Native API
深入理解Kubernetes——容器编排的王者之道
深入理解Kubernetes——容器编排的王者之道
54 1
|
2月前
|
Kubernetes Cloud Native 持续交付
深入理解Kubernetes:容器编排的基石
深入理解Kubernetes:容器编排的基石
|
2月前
|
Kubernetes 负载均衡 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第27天】Kubernetes(简称K8s)是云原生应用的核心容器编排平台,提供自动化、扩展和管理容器化应用的能力。本文介绍Kubernetes的基本概念、安装配置、核心组件(如Pod和Deployment)、服务发现与负载均衡、网络配置及安全性挑战,帮助读者理解和实践Kubernetes在容器编排中的应用。
111 4
|
2月前
|
Kubernetes 监控 Cloud Native
云原生应用:Kubernetes在容器编排中的实践与挑战
【10月更文挑战第26天】随着云计算技术的发展,容器化成为现代应用部署的核心趋势。Kubernetes(K8s)作为容器编排领域的佼佼者,以其强大的可扩展性和自动化能力,为开发者提供了高效管理和部署容器化应用的平台。本文将详细介绍Kubernetes的基本概念、核心组件、实践过程及面临的挑战,帮助读者更好地理解和应用这一技术。
79 3
|
3月前
|
Kubernetes API 调度
中间层 k8s(Kubernetes) 到底是什么,架构是怎么样的?
中间层 k8s(Kubernetes) 到底是什么,架构是怎么样的?
73 3
|
3月前
|
运维 Kubernetes Cloud Native
云原生时代的容器编排:Kubernetes入门与实践
【10月更文挑战第4天】在云计算的浪潮中,云原生技术以其敏捷、可扩展和高效的特点引领着软件开发的新趋势。作为云原生生态中的关键组件,Kubernetes(通常被称为K8s)已成为容器编排的事实标准。本文将深入浅出地介绍Kubernetes的基本概念,并通过实际案例引导读者理解如何利用Kubernetes进行高效的容器管理和服务部署。无论你是初学者还是有一定经验的开发者,本文都将为你打开云原生世界的大门,并助你一臂之力在云原生时代乘风破浪。
|
11天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。

热门文章

最新文章