Pandas vs Spark:数据读取篇

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 按照前文所述,本篇开始Pandas和Spark常用数据处理方法对比系列。数据处理的第一个环节当然是数据读取,所以本文就围绕两个框架常用的数据读取方法做以介绍和对比。

640.png

数据读取是所有数据处理分析的第一步,而Pandas和Spark作为常用的计算框架,都对常用的数据源读取内置了相应接口。总体而言,数据读取可分为从文件读取和从数据库读取两大类,其中数据库读取包含了主流的数据库,从文件读取又区分为不同的文件类型。基于此,本文首先分别介绍Pandas和Spark常用的数据读取API,而后进行简要对比分析。


01 Pandas常用数据读取方法


Pandas内置了丰富的数据读取API,且都是形如pd.read_xxx格式,通过对pd顶级接口方法进行过滤,得到Pandas中支持的数据读取API列表如下:


640.png

  过滤pandas中以read开头的方法名称


按照个人使用频率,对主要API接口介绍如下:

  • read_sql:用于从关系型数据库中读取数据,涵盖了主流的常用数据库支持,一般来讲pd.read_sql的第一个参数是SQL查询语句,第二个参数是数据库连接驱动,所以从这个角度讲read_sql相当于对各种数据库读取方法的二次包装和集成;
  • read_csv:其使用频率不亚于read_sql,而且有时考虑数据读取效率问题甚至常常会首先将数据从数据库中转储为csv文件,而后再用read_csv获取。这一转储的过程目的有二:一是提高读取速度,二是降低数据读取过程中的运行内存占用(实测同样的数据转储为csv文件后再读取,内存占用会更低一些);
  • read_excel:其实也是对xlrd库的二次封装,用来读取Excel文件会更加方便,但日常使用不多;
  • read_json:json文件本质上也属于结构化数据,所以也可将其读取为DataFrame类型,但如果嵌套层级差别较大的话,读取起来不是很合适;
  • read_html:这应该算是Pandas提供的一个小彩蛋了,表面上看它就是一个用于读取html文件中数据表格的接口,但实际上有人却拿他来干着爬虫的事情……
  • read_clipboard:这可以算是Pandas提供的另一个小彩蛋,用于从剪切板中读取结构化数据到DataFrame中。至于数据是如何到剪切板中的,那方式可能就多种多样了,比如从数据库中复制、从excel或者csv文件中复制,进而可以方便的用于读取小型的结构化数据,而不用大费周章的连接数据库或者找到文件路径!
  • read_table:可用于读取txt文件,使用频率不高;
  • read_parquet:Parquet是大数据中的标志性文件,Pandas也对其予以支持,但依赖还是很复杂的;
  • 另外,还有ocr和pickle等文件类型,其中OCR是Hive中的标准数据文件类型,与Parquet类似,也是列式存储,虽然Pandas也提供支持,但既然是大数据,其实与Pandas已经关系不大了;而pickle则是python中常用的序列化存储格式。


在以上方法中,重点掌握和极为常用的数据读取方法当属read_sql和read_csv两种,尤其是read_csv不仅效率高,而且支持非常丰富的参数设置,例如支持跳过指定行数(skip_rows)后读取一定行数(nrows)的数据,就是这个小技巧使得曾经小内存的我也能得以处理大数据,着实欣喜!


02 Spark常用数据读取方法


与Pandas类似,Spark也提供了丰富的数据读取API,对于常用的数据读取方法也都给予了非常好的支持。这里以Scala Spark为例,通过tab键补全命令查看常用的数据读取方法如下:


640.png

       通过spark-shell的tab键补全得到spark.read.的系列方法


可以明显注意到Spark的数据读取API与Pandas接口名称的一个显著区别是:Spark采用二级接口的方式,即首先调用read属性获取读接口的类,然后再区分数据源细分为各种类型;而Pandas则是直接提供了read_各数据类型的API。仍然按照使用频率来分:


  • spark.read.parquet:前面已经提到,parquet是大数据中的标准文件存储格式,也是Apache的顶级项目,相较于OCR而言,Parquet更为流行和通用。Parquet的优势也不少,包括内置了数据Schema、高效的压缩存储等;
  • spark.read.jdbc:通过jdbc提供了对读取各主流数据库的支持,由于其实际上也是一个类,所以相应的参数设置都要依托option方法来进行传递,最后通过执行load实现数据的读取。但不得不说,spark内置的一些默认参数相较于Pandas而言合理性要差很多,例如fetchSize默认为10,这对于大数据读取而言简直是致命的打击,谁用谁知道……
  • spark.read.csv:spark对于csv文件也给予了很好的支持,但参数配置相较于Pandas而言则要逊色很多
  • spark.read.textFile:典型的txt文件读取方式,相信很多人的一个Spark项目word count大多是从读取txt文件开始的吧,不过对于个人而言好像也仅仅是在写word count时才用到了read.textFile。
  • 其他也有read.json和read.orc等,但使用频率不高。


如果说Pandas读取数据库是最为常用的方法,那么Spark其实最为常用的当属Parquet,毕竟Parquet文件与Spark等同为Apache顶级项目,而且更具大数据特色,称得上是大数据文件存储的业界规范!


03 小结


整体来看,Pandas和Spark在数据读取方面都提供了丰富的接口,支持的数据源类型也大体相当。但对参数支持和易用性方面,Pandas对数据库和csv文件相对更加友好,而Spark与Parquet文件格式则更为搭配。虽然同为数据计算框架,但Pandas是单机计算模式,而Spark则是分布式计算,所以不同的数据量级也自然决定了数据源的侧重点不同,本无高下之分,只能说各有千秋。


640.png



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
20天前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
57 20
|
22天前
|
存储 数据挖掘 计算机视觉
Pandas数据应用:图像处理
Pandas 是一个强大的 Python 数据分析库,主要用于处理结构化数据。尽管它不是专门为图像处理设计的,但可以利用其功能辅助图像处理任务。本文介绍如何使用 Pandas 进行图像处理,包括图像读取、显示、基本操作及常见问题解决方法。通过代码案例解释如何将图像转换为 DataFrame 格式,并探讨数据类型不匹配、内存溢出和颜色通道混淆等问题的解决方案。总结中指出,虽然 Pandas 可作为辅助工具,但在实际项目中建议结合专门的图像处理库如 OpenCV 等使用。
56 18
|
16天前
|
机器学习/深度学习 存储 算法
Pandas数据应用:客户流失预测
本文介绍如何使用Pandas进行客户流失预测,涵盖数据加载、预处理、特征工程和模型训练。通过解决常见问题(如文件路径错误、编码问题、列名不一致等),确保数据分析顺利进行。特征工程中创建新特征并转换数据类型,为模型训练做准备。最后,划分训练集与测试集,选择合适的机器学习算法构建模型,并讨论数据不平衡等问题的解决方案。掌握这些技巧有助于有效应对实际工作中的复杂情况。
129 95
|
19天前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
140 88
|
30天前
|
分布式计算 数据可视化 数据挖掘
Pandas数据应用:社交媒体分析
本文介绍如何使用Pandas进行社交媒体数据分析,涵盖数据获取、预处理、探索性分析和建模的完整流程。通过API获取数据并转换为DataFrame格式,处理缺失值和数据类型转换问题。利用Matplotlib等库进行可视化,展示不同类型帖子的数量分布。针对大规模数据集提供内存优化方案,并结合TextBlob进行情感分析。最后总结常见问题及解决方案,帮助读者掌握Pandas在社交媒体数据分析中的应用。
155 96
|
13天前
|
数据采集 存储 供应链
Pandas数据应用:库存管理
本文介绍Pandas在库存管理中的应用,涵盖数据读取、清洗、查询及常见报错的解决方法。通过具体代码示例,讲解如何处理多样数据来源、格式不一致、缺失值和重复数据等问题,并解决KeyError、ValueError等常见错误,帮助提高库存管理效率和准确性。
94 72
|
2月前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
142 73
|
24天前
|
数据采集 机器学习/深度学习 搜索推荐
Pandas数据应用:推荐系统
在数字化时代,推荐系统是互联网公司的重要组成部分,Pandas作为Python的强大数据分析库,在数据预处理和特征工程中发挥关键作用。常见问题包括缺失值、重复值处理及数据类型转换,解决方案分别为使用`fillna()`、`drop_duplicates()`和`astype()`等函数。常见报错如KeyError、ValueError和MemoryError可通过检查列名、确保数据格式正确及分块读取数据等方式解决。合理运用Pandas工具,可为构建高效推荐系统奠定坚实基础。
55 18
Pandas数据应用:推荐系统
|
17天前
|
数据采集 存储 算法
Pandas数据应用:市场篮子分析
市场篮子分析是一种用于发现商品间关联关系的数据挖掘技术,广泛应用于零售业。Pandas作为强大的数据分析库,在此领域具有显著优势。本文介绍了市场篮子分析的基础概念,如事务、项集、支持度、置信度和提升度,并探讨了数据预处理、算法选择、参数设置及结果解释中的常见问题与解决方案,帮助用户更好地进行市场篮子分析,为企业决策提供支持。
60 29
|
12天前
|
数据采集 供应链 数据可视化
Pandas数据应用:供应链优化
在当今全球化的商业环境中,供应链管理日益复杂。Pandas作为Python的强大数据分析库,能有效处理库存、物流和生产计划中的大量数据。本文介绍如何用Pandas优化供应链,涵盖数据导入、清洗、类型转换、分析与可视化,并探讨常见问题及解决方案,帮助读者在供应链项目中更加得心应手。
36 21