缓存与数据库双写一致性深度分析

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 零基础上手秒杀系统(一):防止超卖零基础上手秒杀系统(二):令牌桶限流 + 再谈超卖零基础上手秒杀系统(三):抢购接口隐藏 + 单用户限制频率零基础上手秒杀系统(四):缓存数据(数据库与缓存一致性实战)(本篇)零基础上手秒杀系统:消息队列异步处理订单...


前言



本文是秒杀系统的第四篇,我们来讨论秒杀系统中缓存热点数据的问题,进一步延伸到数据库和缓存的双写一致性问题,并且给出了实现代码。


前文回顾和文章规划



本篇文章主要内容


  • 缓存热点数据
  • 为何要使用缓存
  • 哪类数据适合缓存
  • 缓存的利与弊
  • 缓存和数据库双写一致性
  • 不使用更新缓存而是删除缓存
  • 先删除缓存,还是先操作数据库?
  • 我一定要数据库和缓存数据一致怎么办
  • 实战:先删除缓存,再更新数据库
  • 实战:先更新数据库,再删缓存
  • 实战:删除缓存重试机制
  • 实战:删除缓存重试机制
  • 实战:读取binlog异步删除缓存


项目源码在这里


妈妈再也不用担心我看完文章不会写代码实现啦:

https://github.com/qqxx6661/miaosha


正文




缓存热点数据


在秒杀实际的业务中,一定有很多需要做缓存的场景,比如售卖的商品,包括名称,详情等。访问量很大的数据,可以算是“热点”数据了,尤其是一些读取量远大于写入量的数据,更应该被缓存,而不应该让请求打到数据库上。


为何要使用缓存


缓存是为了追求“快”而存在的。我们用代码举一个例子。

拿出我之前三篇文章的项目代码来,在其中增加两个查询库存的接口getStockByDB和getStockByCache,分别表示从数据库和缓存查询某商品的库存量。

随后我们用JMeter进行并发请求测试。

/**
 * 查询库存:通过数据库查询库存
 * @param sid
 * @return
 */
@RequestMapping("/getStockByDB/{sid}")
@ResponseBody
public String getStockByDB(@PathVariable int sid) {
    int count;
    try {
        count = stockService.getStockCountByDB(sid);
    } catch (Exception e) {
        LOGGER.error("查询库存失败:[{}]", e.getMessage());
        return "查询库存失败";
    }
    LOGGER.info("商品Id: [{}] 剩余库存为: [{}]", sid, count);
    return String.format("商品Id: %d 剩余库存为:%d", sid, count);
}
/**
复制代码
• 查询库存:通过缓存查询库存
• 缓存命中:返回库存
• 缓存未命中:查询数据库写入缓存并返回
• @param sid
• @return
*/
@RequestMapping("/getStockByCache/{sid}")
@ResponseBody
public String getStockByCache(@PathVariable int sid) {
Integer count;
try {
count = stockService.getStockCountByCache(sid);
if (count == null) {
count = stockService.getStockCountByDB(sid);
LOGGER.info("缓存未命中,查询数据库,并写入缓存");
stockService.setStockCountToCache(sid, count);
}
} catch (Exception e) {
LOGGER.error("查询库存失败:[{}]", e.getMessage());
return "查询库存失败";
}
LOGGER.info("商品Id: [{}] 剩余库存为: [{}]", sid, count);
return String.format("商品Id: %d 剩余库存为:%d", sid, count);
}

在设置为10000个并发请求的情况下,运行JMeter,结果首先出现了大量的报错,10000个请求中98%的请求都直接失败了。打开日志,报错如下:

原来是SpringBoot内置的Tomcat最大并发数搞的鬼,其默认值为200,对于10000的并发,单机服务实在是力不从心。当然,你可以修改这里的并发数设置,但是你的小机器仍然可能会扛不住。

将其修改为如下配置后,我的小机器才在通过缓存拿库存的情况下,保证了10000个并发的100%返回请求:

server.tomcat.max-threads=10000
server.tomcat.max-connections=10000
复制代码

不使用缓存的情况下,吞吐量为668个请求每秒,并且有5%的请求由于服务压力实在太大,没有返回库存数据:

使用缓存的情况下,吞吐量为2177个请求每秒:

在这种“不严谨”的对比下,有缓存对于一台单机,性能提升了3倍多,如果在多台机器,更多并发的情况下,由于数据库有了更大的压力,缓存的性能优势应该会更加明显。

测完了这个小实验,我看了眼我挂着Mysql的小水管腾讯云服务器,生怕他被这么高流量搞挂。这种突发的流量,指不定会被检测为异常攻击流量呢~

我用的是腾讯云服务器1C4G2M,活动买的,很便宜。


哪类数据适合缓存


缓存量大但又不常变化的数据,比如详情,评论等。对于那些经常变化的数据,其实并不适合缓存,一方面会增加系统的复杂性(缓存的更新,缓存脏数据),另一方面也给系统带来一定的不稳定性(缓存系统的维护)。

但一些极端情况下,你需要将一些会变动的数据进行缓存,比如想要页面显示准实时的库存数,或者其他一些特殊业务场景。这时候你需要保证缓存不能(一直)有脏数据,这就需要再深入讨论一下。


缓存的利与弊


我们到底该不该上缓存的,这其实也是个trade-off的问题。

上缓存的优点:

  • 能够缩短服务的响应时间,给用户带来更好的体验。
  • 能够增大系统的吞吐量,依然能够提升用户体验。
  • 减轻数据库的压力,防止高峰期数据库被压垮,导致整个线上服务BOOM!

上了缓存,也会引入很多额外的问题:

  • 缓存有多种选型,是内存缓存,memcached还是redis,你是否都熟悉,如果不熟悉,无疑增加了维护的难度(本来是个纯洁的数据库系统)。
  • 缓存系统也要考虑分布式,比如redis的分布式缓存还会有很多坑,无疑增加了系统的复杂性。
  • 在特殊场景下,如果对缓存的准确性有非常高的要求,就必须考虑缓存和数据库的一致性问题


缓存和数据库双写一致性


说了这么多缓存的必要性,那么使用缓存是不是就是一个很简单的事情了呢,我之前也一直是这么觉得的,直到遇到了需要缓存与数据库保持强一致的场景,才知道让数据库数据和缓存数据保持一致性是一门很高深的学问。

从远古的硬件缓存,操作系统缓存开始,缓存就是一门独特的学问。这个问题也被业界探讨了非常久,争论至今。我翻阅了很多资料,发现其实这是一个权衡的问题。值得好好讲讲。

以下的讨论会引入几方观点,我会跟着观点来写代码验证所提到的问题。


不使用更新缓存而是删除缓存


大部分观点认为,做缓存不应该是去更新缓存,而是应该删除缓存,然后由下个请求去去缓存,发现不存在后再读取数据库,写入缓存。

《分布式之数据库和缓存双写一致性方案解析》孤独烟:

原因一:线程安全角度

同时有请求A和请求B进行更新操作,那么会出现

(1)线程A更新了数据库

(2)线程B更新了数据库

(3)线程B更新了缓存

(4)线程A更新了缓存

这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑。

原因二:业务场景角度

有如下两点:

(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。

(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

其实如果业务非常简单,只是去数据库拿一个值,写入缓存,那么更新缓存也是可以的。但是,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。


先删除缓存,还是先操作数据库?


那么问题就来了,我们是先删除缓存,然后再更新数据库,还是先更新数据库,再删缓存呢?

对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:如果出现不一致,谁先做对业务的影响较小,就谁先执行。

假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss。

假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致。

沈剑老师说的没有问题,不过没完全考虑好并发请求时的数据脏读问题,让我们再来看看孤独烟老师《分布式之数据库和缓存双写一致性方案解析》:

先删缓存,再更新数据库

该方案会导致请求数据不一致

同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:

(1)请求A进行写操作,删除缓存

(2)请求B查询发现缓存不存在

(3)请求B去数据库查询得到旧值

(4)请求B将旧值写入缓存

(5)请求A将新值写入数据库

上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

所以先删缓存,再更新数据库并不是一劳永逸的解决方案,再看看先更新数据库,再删缓存

先更新数据库,再删缓存这种情况不存在并发问题么?

不是的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生

(1)缓存刚好失效

(2)请求A查询数据库,得一个旧值

(3)请求B将新值写入数据库

(4)请求B删除缓存

(5)请求A将查到的旧值写入缓存

ok,如果发生上述情况,确实是会发生脏数据。

然而,发生这种情况的概率又有多少呢?

发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。

先更新数据库,再删缓存依然会有问题,不过,问题出现的可能性会因为上面说的原因,变得比较低!

所以,如果你想实现基础的缓存数据库双写一致的逻辑,那么在大多数情况下,在不想做过多设计,增加太大工作量的情况下,请先更新数据库,再删缓存!


我一定要数据库和缓存数据一致怎么办


那么,如果我tm非要保证绝对一致性怎么办,先给出结论:

没有办法做到绝对的一致性,这是由CAP理论决定的,缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP。

所以,我们得委曲求全,可以去做到BASE理论中说的最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性

大佬们给出了到达最终一致性的解决思路,主要是针对上面两种双写策略(先删缓存,再更新数据库/先更新数据库,再删缓存)导致的脏数据问题,进行相应的处理,来保证最终一致性。


延时双删

问:先删除缓存,再更新数据库中避免脏数据?

答案:采用延时双删策略。

上文我们提到,在先删除缓存,再更新数据库的情况下,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

那么延时双删怎么解决这个问题呢?

(1)先淘汰缓存

(2)再写数据库(这两步和原来一样)

(3)休眠1秒,再次淘汰缓存

这么做,可以将1秒内所造成的缓存脏数据,再次删除。

那么,这个1秒怎么确定的,具体该休眠多久呢?

针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

如果你用了mysql的读写分离架构怎么办?

ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。

(1)请求A进行写操作,删除缓存

(2)请求A将数据写入数据库了,

(3)请求B查询缓存发现,缓存没有值

(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值

(5)请求B将旧值写入缓存

(6)数据库完成主从同步,从库变为新值

上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。

采用这种同步淘汰策略,吞吐量降低怎么办?

ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。

所以在先删除缓存,再更新数据库的情况下,可以使用延时双删的策略,来保证脏数据只会存活一段时间,就会被准确的数据覆盖。

在先更新数据库,再删缓存的情况下,缓存出现脏数据的情况虽然可能性极小,但也会出现。我们依然可以用延时双删策略,在请求A对缓存写入了脏的旧值之后,再次删除缓存。来保证去掉脏缓存。


删缓存失败了怎么办:重试机制

看似问题都已经解决了,但其实,还有一个问题没有考虑到,那就是删除缓存的操作,失败了怎么办?比如延时双删的时候,第二次缓存删除失败了,那不还是没有清除脏数据吗?

解决方案就是再加上一个重试机制,保证删除缓存成功。

参考孤独烟老师给的方案图:

方案一:

流程如下所示

(1)更新数据库数据;

(2)缓存因为种种问题删除失败

(3)将需要删除的key发送至消息队列

(4)自己消费消息,获得需要删除的key

(5)继续重试删除操作,直到成功

然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

方案二:

流程如下图所示:

(1)更新数据库数据

(2)数据库会将操作信息写入binlog日志当中

(3)订阅程序提取出所需要的数据以及key

(4)另起一段非业务代码,获得该信息

(5)尝试删除缓存操作,发现删除失败

(6)将这些信息发送至消息队列

(7)重新从消息队列中获得该数据,重试操作。

而读取binlog的中间件,可以采用阿里开源的canal

好了,到这里我们已经把缓存双写一致性的思路彻底梳理了一遍,下面就是我对这几种思路徒手写的实战代码,方便有需要的朋友参考。


实战:先删除缓存,再更新数据库


终于到了实战,我们在秒杀项目的代码上增加接口:先删除缓存,再更新数据库

OrderController中新增:

/**
 * 下单接口:先删除缓存,再更新数据库
 * @param sid
 * @return
 */
@RequestMapping("/createOrderWithCacheV1/{sid}")
@ResponseBody
public String createOrderWithCacheV1(@PathVariable int sid) {
    int count = 0;
    try {
        // 删除库存缓存
        stockService.delStockCountCache(sid);
        // 完成扣库存下单事务
        orderService.createPessimisticOrder(sid);
    } catch (Exception e) {
        LOGGER.error("购买失败:[{}]", e.getMessage());
        return "购买失败,库存不足";
    }
    LOGGER.info("购买成功,剩余库存为: [{}]", count);
    return String.format("购买成功,剩余库存为:%d", count);
}
复制代码

stockService中新增:

@Override
public void delStockCountCache(int id) {
    String hashKey = CacheKey.STOCK_COUNT.getKey() + "_" + id;
    stringRedisTemplate.delete(hashKey);
    LOGGER.info("删除商品id:[{}] 缓存", id);
}
复制代码

其他涉及的代码都在之前三篇文章中有介绍,并且可以直接去Github拿到项目源码,就不在这里重复贴了。


实战:先更新数据库,再删缓存


如果是先更新数据库,再删缓存,那么代码只是在业务顺序上颠倒了一下,这里就只贴OrderController中新增:

/**
 * 下单接口:先更新数据库,再删缓存
 * @param sid
 * @return
 */
@RequestMapping("/createOrderWithCacheV2/{sid}")
@ResponseBody
public String createOrderWithCacheV2(@PathVariable int sid) {
    int count = 0;
    try {
        // 完成扣库存下单事务
        orderService.createPessimisticOrder(sid);
        // 删除库存缓存
        stockService.delStockCountCache(sid);
    } catch (Exception e) {
        LOGGER.error("购买失败:[{}]", e.getMessage());
        return "购买失败,库存不足";
    }
    LOGGER.info("购买成功,剩余库存为: [{}]", count);
    return String.format("购买成功,剩余库存为:%d", count);
}
复制代码


实战:缓存延时双删


如何做延时双删呢,最好的方法是开设一个线程池,在线程中删除key,而不是使用Thread.sleep进行等待,这样会阻塞用户的请求。

更新前先删除缓存,然后更新数据,再延时删除缓存。

OrderController中新增接口:

// 延时时间:预估读数据库数据业务逻辑的耗时,用来做缓存再删除
private static final int DELAY_MILLSECONDS = 1000;
/**
复制代码
• 下单接口:先删除缓存,再更新数据库,缓存延时双删
• @param sid
• @return
*/
@RequestMapping("/createOrderWithCacheV3/{sid}")
@ResponseBody
public String createOrderWithCacheV3(@PathVariable int sid) {
int count;
try {
// 删除库存缓存
stockService.delStockCountCache(sid);
// 完成扣库存下单事务
count = orderService.createPessimisticOrder(sid);
// 延时指定时间后再次删除缓存
cachedThreadPool.execute(new delCacheByThread(sid));
} catch (Exception e) {
LOGGER.error("购买失败:[{}]", e.getMessage());
return "购买失败,库存不足";
}
LOGGER.info("购买成功,剩余库存为: [{}]", count);
return String.format("购买成功,剩余库存为:%d", count);
}

OrderController中新增线程池:

// 延时双删线程池
private static ExecutorService cachedThreadPool = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());
/**
复制代码
• 缓存再删除线程
*/
private class delCacheByThread implements Runnable {
private int sid;
public delCacheByThread(int sid) {
this.sid = sid;
}
public void run() {
try {
LOGGER.info("异步执行缓存再删除,商品id:[{}], 首先休眠:[{}] 毫秒", sid, DELAY_MILLSECONDS);
Thread.sleep(DELAY_MILLSECONDS);
stockService.delStockCountCache(sid);
LOGGER.info("再次删除商品id:[{}] 缓存", sid);
} catch (Exception e) {
LOGGER.error("delCacheByThread执行出错", e);
}
}
}

来试验一下,请求接口createOrderWithCacheV3:

日志中,做到了两次删除:


实战:删除缓存重试机制


上文提到了,要解决删除失败的问题,需要用到消息队列,进行删除操作的重试。这里我们为了达到效果,接入了RabbitMq,并且需要在接口中写发送消息,并且需要消费者常驻来消费消息。Spring整合RabbitMq还是比较简单的,我把简单的整合代码也贴出来。

pom.xml新增RabbitMq的依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
复制代码

写一个RabbitMqConfig:

@Configuration
public class RabbitMqConfig {
@Bean
public Queue delCacheQueue() {
    return new Queue("delCache");
}
复制代码
复制代码}

添加一个消费者:

@Component
@RabbitListener(queues = "delCache")
public class DelCacheReceiver {
private static final Logger LOGGER = LoggerFactory.getLogger(DelCacheReceiver.class);
@Autowired
private StockService stockService;
@RabbitHandler
public void process(String message) {
    LOGGER.info("DelCacheReceiver收到消息: " + message);
    LOGGER.info("DelCacheReceiver开始删除缓存: " + message);
    stockService.delStockCountCache(Integer.parseInt(message));
}
复制代码
复制代码}

OrderController中新增接口:

/**
 * 下单接口:先更新数据库,再删缓存,删除缓存重试机制
 * @param sid
 * @return
 */
@RequestMapping("/createOrderWithCacheV4/{sid}")
@ResponseBody
public String createOrderWithCacheV4(@PathVariable int sid) {
    int count;
    try {
        // 完成扣库存下单事务
        count = orderService.createPessimisticOrder(sid);
        // 删除库存缓存
        stockService.delStockCountCache(sid);
        // 延时指定时间后再次删除缓存
        // cachedThreadPool.execute(new delCacheByThread(sid));
        // 假设上述再次删除缓存没成功,通知消息队列进行删除缓存
        sendDelCache(String.valueOf(sid));
} catch (Exception e) {
    LOGGER.error("购买失败:[{}]", e.getMessage());
    return "购买失败,库存不足";
}
LOGGER.info("购买成功,剩余库存为: [{}]", count);
return String.format("购买成功,剩余库存为:%d", count);
复制代码
复制代码}

访问createOrderWithCacheV4:

可以看到,我们先完成了下单,然后删除了缓存,并且假设延迟删除缓存失败了,发送给消息队列重试的消息,消息队列收到消息后再去删除缓存。


实战:读取binlog异步删除缓存


我们需要用到阿里开源的canal来读取binlog进行缓存的异步删除。

不过很蛋疼的是,这次文章的工作量实在有点太大了,连续写代码和整理文字身体有点吃不消了,不知道你们有没有学累。


扩展阅读


更新缓存的的Design Pattern有四种:Cache aside, Read through, Write through, Write behind caching


小结


引用陈浩《缓存更新的套路》最后的总结语作为小结:

分布式系统里要么通过2PC或是Paxos协议保证一致性,要么就是拼命的降低并发时脏数据的概率

缓存系统适用的场景就是非强一致性的场景,所以它属于CAP中的AP,BASE理论。

异构数据库本来就没办法强一致,只是尽可能减少时间窗口,达到最终一致性

还有别忘了设置过期时间,这是个兜底方案


结束语



本文总结了秒杀系统中关于缓存数据的思考和实现,并探讨了缓存数据库双写一致性问题。

可以总结为如下几点:

  • 对于读多写少的数据,请使用缓存。
  • 为了保持一致性,会导致系统吞吐量的下降。
  • 为了保持一致性,会导致业务代码逻辑复杂。
  • 缓存做不到绝对一致性,但可以做到最终一致性。
  • 对于需要保证缓存数据库数据一致的情况,请尽量考虑对一致性到底有多高要求,选定合适的方案,避免过度设计。

作者水平有限,写文章过程中难免出现错误和疏漏,请理性讨论与指正。

希望大家多多支持我的公主号:后端技术漫谈


参考




相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 缓存 数据库
解决缓存与数据库的数据一致性问题的终极指南
解决缓存与数据库的数据一致性问题的终极指南
176 63
|
2月前
|
缓存 Java Shell
Android 系统缓存扫描与清理方法分析
Android 系统缓存从原理探索到实现。
67 15
Android 系统缓存扫描与清理方法分析
|
1月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
1月前
|
缓存 NoSQL 数据库
运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!
本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!
|
1月前
|
缓存 NoSQL 关系型数据库
mysql和缓存一致性问题
本文介绍了五种常见的MySQL与Redis数据同步方法:1. 双写一致性,2. 延迟双删策略,3. 订阅发布模式(使用消息队列),4. 基于事件的缓存更新,5. 缓存预热。每种方法的实现步骤、优缺点均有详细说明。
|
2月前
|
SQL 关系型数据库 MySQL
Vanna使用ollama分析本地数据库
这篇文章详细介绍了如何使用Vanna和Ollama框架来分析本地数据库,实现自然语言查询转换为SQL语句并与数据库交互的过程。
308 7
Vanna使用ollama分析本地数据库
|
1月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
58 2
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
50 5
|
2月前
|
缓存 监控 算法
小米面试题:多级缓存一致性问题怎么解决
【10月更文挑战第23天】在现代分布式系统中,多级缓存架构因其能够显著提高系统性能和响应速度而被广泛应用。
56 3
|
2月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应