文本匹配利器:从孪生网络到Sentence-BERT综述

简介: 文本匹配利器:从孪生网络到Sentence-BERT综述

文本匹配是自然语言处理领域一个基础且重要的方向,一般研究两段文本之间的关系。文本相似度、自然语言推理、问答系统、信息检索都可以看作针对不同数据和场景的文本匹配应用。


本文总结了文本匹配任务中的经典网络Siamse Network,它和近期预训练语言模型的组合,一些调优技巧以及在线下数据集上的效果检验。


Siamese 孪生网络



在正式介绍前,我们先来看一个有趣的故事。


孪生网络的由来


“Siamese”中的“Siam”是古时泰国的称呼,中文译作暹罗,所以“Siamese”就是指“暹罗”人或“泰国”人。“Siamese”在英语中同时表示“孪生”,这又是为什么呢?


微信图片_20220524133354.jpg


十九世纪,泰国出生了一对连体婴儿“恩”和“昌”,当时的医学技术无法使他们分离出来,于是两人顽强地生活了一生。


1829年他们被英国商人发现,进入马戏团,在全世界各地演出。1839年他们访问美国北卡罗莱那州成为“玲玲马戏团” 的台柱,最后成为美国公民。1843年4月13日跟英国一对姐妹结婚,恩生了10个小孩,昌生了12个。1874年,两人因病均于63岁离开了人间。他们的肝至今仍保存在费城的马特博物馆内。


从此之后,“暹罗双胞胎”(Siamese twins)就成了连体人的代名词,也因为这对双胞胎全世界开始重视这项特殊疾病。


孪生网络


由于结构具有鲜明的对称性,就像两个孪生兄弟,所以下图这种神经网络结构被研究人员称作“Siamese Network”,即孪生网络。


微信图片_20220524133425.jpg


其中最能体现“孪生”的地方,在于网络具有相同的编码器(sentence encoder),即将文本转换为高维向量的部分。网络随后对两段文本的特征进行交互,最后完成分类/相似预测。“孪生网络”结构简单,训练稳定,是很多文本任务不错的baseline模型。

孪生网络的具体用途是衡量两个输入文本的相似程度。


例如,现在我们有文本1和2,首先把它们分别输入 sentence encoder 进行特征提取和编码,将输入映射到新的空间得到特征向量u和v;最终通过u、v的拼接组合,经过下游网络来计算文本1和2的相似性。


整个过程有2个值得关注的点:


  • 在训练和测试中,模型的编码器是权重共享的(“孪生”);编码器的选择非常广泛,传统的CNN、RNN和Attention、Transformer都可以
  • 得到特征u、v后,可以直接使用cosine距离、欧式距离得到两个文本的相似度;不过更通用的做法是,基于u和v构建用于匹配关系的特征向量,然后用额外的模型学习通用的文本关系映射;毕竟我们的场景不一定只是衡量相似度,可能还有问答、蕴含等复杂任务


三连体网络


基于孪生网络,还有人提出了 Triplet network 三连体网络。顾名思义,输入由三部分组成,文本1,和1相似的文本2,和1不相似的文本3。


训练的目标非常朴素,期望让相同类别间的距离尽可能的小,让不同类别间的距离尽可能的大,即减小类内距,增大类间距。

微信图片_20220524133440.jpg


Sentence-BERT




自从2018年底Bert等预训练语言模型横空出世,NLP届的游戏规则某种程度上被大幅更改了。在计算资源允许的条件下,Bert成为解决很多问题的首选。甚至有时候拿Bert跑一跑baseline,发现问题已经解决了十之八九。


但是Bert的缺点也很明显,1.1亿参数量使得推理速度明显比CNN等传统网络慢了不止一个量级,对资源要求更高,也不适合处理某些任务。


微信图片_20220524133451.png


例如,从10,000条句子中找到最相似的一对句子,由于可能的组合众多,需要完成49,995,000次推理;在一块现代V100GPU上使用Bert计算,将消耗65小时


考虑到孪生网络的简洁有效,有没有可能将它和Bert强强联合呢?


当然可以,这正是论文《Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks》的工作,首次提出了Sentence-Bert模型(以下简称SBert)。


SBert在众多文本匹配工作中(包括语义相似性、推理等)都取得了最优结果。更让人惊讶的是,前文所述的从10,000条句子寻找最相似pair任务,SBert仅需5秒就能完成!


基于BERT的文本匹配


让我们简短回顾此前Bert是怎么处理文本匹配任务的。


微信图片_20220524133505.jpg


常规做法是将匹配转换成二分类任务。输入的两个文本拼接成一个序列(中间用特殊符号“SEP”分割),经过12层或24层Transformer模块编码后,将输出层的字向量取平均或者取“CLS”位置的特征作为句向量,经softmax完成最终分类。


但是论文作者 Nils Reimers 在实验中指出,这样的做法产生的结果并不理想(至少在处理语义检索和聚类问题时是如此),甚至比Glove词向量取平均的效果还差。


微信图片_20220524133514.jpg


基于S-BERT的文本匹配


为了让Bert更好地利用文本信息,作者们在论文中提出了如下的SBert模型。是不是非常眼熟?对,这不就是之前见过的孪生网络嘛!


微信图片_20220524133524.jpg


SBert沿用了孪生网络的结构,文本Encoder部分用同一个Bert来处理。之后,作者分别实验了CLS-token和2种池化策略(Avg-Pooling、Mean-Pooling),对Bert输出的字向量进一步特征提取、压缩,得到u、v。关于u、v整合,作者提供了3种策略:


  • 针对分类任务,将u、v拼接,接入全连接网络,经softmax分类输出;损失函数用交叉熵
  • 直接计算、输出余弦相似度;训练损失函数采用均方根误差
  • 如果输入的是三元组,论文种也给出了相应的损失函数


微信图片_20220524133535.jpg


总的来说,SBert直接用Bert的原始权重初始化,在具体数据集上微调,训练过程和传统Siamse Network差异不大。


但是这种训练方式能让Bert更好的捕捉句子之间的关系,生成更优质的句向量。在测试阶段,SBert直接使用余弦相似度来衡量两个句向量之间的相似度,极大提升了推理速度。


实验为证


作者在7个文本匹配相关的任务中做了对比实验,结果在其中5个任务上,SBert都有更优表现。


微信图片_20220524133545.png


作者还做了一些有趣的消融实验。


使用NLI和STS为代表的匹配数据集,在分类目标函数训练时,作者测试了不同的整合策略,结果显示“(u, v, |u-v|)”的组合效果最好。这里面最重要的部分是元素差:(|u - v|)。句向量之间的差异度量了两个句子嵌入维度间的距离,确保相似的pair更近,不同的pair更远。


微信图片_20220524133554.png


文章最后,作者将SBert和传统方法做了对比。


微信图片_20220524133603.jpg


SBert的计算效率要更高。其中的smart-batching是一个小技巧。先将输入的文本按长度排序,这样同一个mini-batch的文本长度更加统一,padding时能显著减少填充的token。


线下实测


我们将SBert模型在天池—新冠疫情相似句对判定比赛数据集上做了测试。经数据增强后,线下训练集和验证集分别是13,500和800条句子组合。预训练模型权重选择BERT_large。


最终SBert单模型在验证集上的准确率是95.7%。直接使用Bert微调准确率为95.2%


小结



本文介绍了文本匹配任务中常用的孪生网络,和在此基础上改进而来的Sentence-BERT模型。


Siamse Network 简洁的设计和平稳高效训练非常适合作为文本匹配任务的baseline模型。SBert则充分利用了孪生网络的优点和预训练模型的特征抽取优势,在众多匹配任务上取得了最优结果。


抛开具体任务,SBert 可以帮助我们生成更好的句向量,在一些任务上可能产生更优结果。在推理阶段,SBert直接计算余弦相似度的方式,大大缩短了预测时间,在语义检索、信息搜索等任务中预计会有不错表现。同时,得益于生成的高质量句嵌入特征,SBert也非常适合做文本聚类、新FAQ发现等工作

相关文章
|
5月前
|
机器学习/深度学习 自然语言处理 数据库
孪生神经网络的作用
孪生神经网络(Siamese Neural Network,SNN)是一种特殊的神经网络架构,用于比较两个输入样本并输出它们之间的相似度。孪生神经网络的主要特点是由两个或多个共享权重的子网络组成,能够学习有效的相似度度量。
59 0
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
2月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
55 7
|
3月前
|
数据采集 搜索推荐 算法
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
本文通过Python爬虫技术采集B站视频评论数据,利用LDA主题分析、聚类分析和语义网络分析等方法,对评论进行深入的文本分析,挖掘用户评论的主题、情感倾向和语义结构,旨在为商业决策提供支持,优化内容创作和用户满意度。
215 2
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
6月前
|
人工智能 数据可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
|
6月前
|
机器学习/深度学习 算法框架/工具
数据分享|R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据
数据分享|R语言用Keras长短期记忆LSTM神经网络分类分析问答文本数据
|
6月前
|
数据采集 机器学习/深度学习 自然语言处理
【相关问题解答2】bert中文文本摘要代码:结果输出为一些重复的标点符号和数字
【相关问题解答2】bert中文文本摘要代码:结果输出为一些重复的标点符号和数字
52 0
|
6月前
|
自然语言处理 Python
【相关问题解答1】bert中文文本摘要代码:import时无法找到包时,几个潜在的原因和解决方法
【相关问题解答1】bert中文文本摘要代码:import时无法找到包时,几个潜在的原因和解决方法
51 0