【NLP最佳实践】Huggingface Transformers实战教程

简介: 【NLP最佳实践】Huggingface Transformers实战教程

内容简介


🤗手把手带你学 :快速入门Huggingface Transformers

《Huggingface Transformers实战教程 》是专门针对HuggingFace开源的transformers库开发的实战教程,适合从事自然语言处理研究的学生、研究人员以及工程师等相关人员的学习与参考,目标是阐释transformers模型以及Bert等预训练模型背后的原理,通俗生动地解释transformers库的如何使用与定制化开发,帮助受众使用当前NLP前沿模型解决实际问题并取得优秀稳定的实践效果。


66.png


学习大纲


01-认识transformers

02-文本分类实战:基于Bert的企业隐患排查分类模型

03-文本多标签分类实战:基于Bert对推特文本进行多标签分类

04-句子相似性识别实战:基于Bert对句子对进行相似性二分类

05-命名实体识别实战:基于Bert实现文本NER任务

06-多项选择任务实战:基于Bert实现SWAG常识问题的多项选择

07-文本生成实战:基于预训练模型实现文本文本生成

08-文本摘要实战:基于Bert实现文本摘要任务

09-文本翻译实战:基于Bert实现端到端的机器翻译

10-问答实战:基于预训练模型实现QA


讨论交流


https://www.heywhale.com/home/activity/detail/61dd2a3dc238c000186ac330


相关文章
|
7月前
|
数据采集 机器学习/深度学习 自然语言处理
NLP助力非结构化文本抽取:实体关系提取实战
本文介绍了一套基于微博热帖的中文非结构化文本分析系统,通过爬虫代理采集数据,结合NLP技术实现实体识别、关系抽取及情感分析。核心技术包括爬虫模块、请求配置、页面采集和中文NLP处理,最终将数据结构化并保存为CSV文件或生成图谱。代码示例从基础正则规则到高级深度学习模型(如BERT-BiLSTM-CRF)逐步演进,适合初学者与进阶用户调试与扩展,展现了中文NLP在实际场景中的应用价值。
536 3
NLP助力非结构化文本抽取:实体关系提取实战
|
6月前
|
数据采集 缓存 自然语言处理
NLP驱动网页数据分类与抽取实战
本文探讨了使用NLP技术进行网页商品数据抽取时遇到的三大瓶颈:请求延迟高、结构解析慢和分类精度低,并以目标站点goofish.com为例,展示了传统方法在采集商品信息时的性能问题。通过引入爬虫代理降低封禁概率、模拟真实用户行为优化请求,以及利用关键词提取提升分类准确性,实现了请求成功率从65%提升至98%,平均请求耗时减少72.7%,NLP分类错误率下降73.6%的显著优化效果。最终,代码实现快速抓取并解析商品数据,支持价格统计与关键词分析,为构建智能推荐模型奠定了基础。
138 0
NLP驱动网页数据分类与抽取实战
|
11月前
|
人工智能 自然语言处理 API
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
UI-TARS Desktop 是一款基于视觉语言模型的 GUI 代理应用,支持通过自然语言控制电脑操作,提供跨平台支持、实时反馈和精准的鼠标键盘控制。
3138 17
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理实战第二版(MEAP)(六)(1)
自然语言处理实战第二版(MEAP)(六)
136 2
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
1170 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
机器学习/深度学习 人工智能 自然语言处理
Python自然语言处理实战:文本分类与情感分析
本文探讨了自然语言处理中的文本分类和情感分析技术,阐述了基本概念、流程,并通过Python示例展示了Scikit-learn和transformers库的应用。面对多义性理解等挑战,研究者正探索跨域适应、上下文理解和多模态融合等方法。随着深度学习的发展,这些技术将持续推动人机交互的进步。
644 1
|
自然语言处理 监控 数据挖掘
|
自然语言处理 API 数据库
自然语言处理实战第二版(MEAP)(六)(5)
自然语言处理实战第二版(MEAP)(六)
152 3
|
算法 搜索推荐 数据库
自然语言处理实战第二版(MEAP)(五)(4)
自然语言处理实战第二版(MEAP)(五)
158 3