Python自动化办公之Excel对比工具

简介: 今天我们继续分享真实的自动化办公案例,希望各位 Python 爱好者能够从中得到些许启发,在自己的工作生活中更多的应用 Python,使得工作事半功倍!

需求


由于工作当中经常需要对比前后两个 Excel 文件,文件内容比较多,人工肉眼对比太费劲,还容易出错,搞个 Python 小工具,会不会事半功倍

微信图片_20220522225411.png

运行脚本,可以把前后两个 Excel 文件当中不同的内容数据展现出来,不同 sheet 页签表示不同的数据处理结果


需求解析


不需要解析,直接干


代码实现


我们先导入两份测试数据,进行 old 和 new 的处理,注意数据中 account number 是唯一索引

old = pd.read_excel('sample-address-1.xlsx', 'Sheet1', na_values=['NA'])
new = pd.read_excel('sample-address-2.xlsx', 'Sheet1', na_values=['NA'])
old['version'] = "old"
new['version'] = "new"


image.gif

对于我们这个小工具,主要考虑三种变化类型

  • 哪些是新增的 account
  • 哪些是被删除的 account
  • 哪些是被修改的 account

对于新增和删除的 account,我们可以直接用两份数据相减即可

old_accts_all = set(old['account number'])
new_accts_all = set(new['account number'])
dropped_accts = old_accts_all - new_accts_all
added_accts = new_accts_all - old_accts_all


微信图片_20220522225515.png

接下来我们再将所有的数据拼接到一起,并使用 drop_duplicates 来保留被修改的数据

all_data = pd.concat([old,new],ignore_index=True)
changes = all_data.drop_duplicates(subset=["account number",
                                           "name", "street",
                                           "city","state",
                                           "postal code"], keep='last')


微信图片_20220522225533.png

接下来,我们需要找出哪些 account 有重复的条目,重复的 account 表明更改了我们需要标记的字段中的值。我们可以使用重复函数来获取所有这些 account 的列表,并仅过滤掉那些重复的 account

dupe_accts = changes[changes['account number'].duplicated() == True]['account number'].tolist()
dupes = changes[changes["account number"].isin(dupe_accts)]dupe_accts = changes[changes['account number'].duplicated() == True]['account number'].tolist()dupes = changes[changes["account number"].isin(dupe_accts)]


微信图片_20220522225552.png

现在我们将旧数据和新数据进行拆分,删除不必要的版本列并将 account 设置为索引

change_new = dupes[(dupes["version"] == "new")]
change_old = dupes[(dupes["version"] == "old")]
change_new = change_new.drop(['version'], axis=1)
change_old = change_old.drop(['version'], axis=1)
change_new.set_index('account number', inplace=True)
change_old.set_index('account number', inplace=True)
df_all_changes = pd.concat([change_old, change_new],
                            axis='columns',
                            keys=['old', 'new'],
                            join='outer')
df_all_changes


微信图片_20220522225610.png

接下来我们定义一个函数来展示从一列到另一列的变化


def report_diff(x):
    return x[0] if x[0] == x[1] else '{} ---> {}'.format(*x)def report_diff(x):    return x[0] if x[0] == x[1] else '{} ---> {}'.format(*x)

现在使用 swaplevel 函数来获取彼此相邻的旧列和新列

微信图片_20220522225613.png

最后我们使用 groupby 然后应用我们自定义 report_diff 函数将两个相应的列相互比较


df_changed = df_all_changes.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))
df_changed = df_changed.reset_index()df_changed = df_all_changes.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))df_changed = df_changed.reset_index()


微信图片_20220522225617.png

接下来我们需要找出被删除和新增的数据

df_removed = changes[changes["account number"].isin(dropped_accts)]
df_added = changes[changes["account number"].isin(added_accts)]df_removed = changes[changes["account number"].isin(dropped_accts)]df_added = changes[changes["account number"].isin(added_accts)]


我们可以使用单独的选项卡将所有内容输出到 Excel 文件,对应于更改、添加和删除

output_columns = ["account number", "name", "street", "city", "state", "postal code"]
writer = pd.ExcelWriter("my-diff.xlsx")
df_changed.to_excel(writer,"changed", index=False, columns=output_columns)
df_removed.to_excel(writer,"removed",index=False, columns=output_columns)
df_added.to_excel(writer,"added",index=False, columns=output_columns)
writer.save()


最后,我们就得到了最开始的效果图片展示的一个新的 Excel 文件

当然上面的代码对于毫无编程的人来说还是有一点点复杂,我们还是做成 GUI 小程序吧,这次我们使用 Tkinter 来编写 GUI 程序

我们首先导入 Tkinter 库并进行初始化

import tkinter
from tkinter import *
from tkinter import Label, Button, Entry, messagebox
from tkinter import filedialog
from deal import deal_excel
window = tkinter.Tk()
path_file1 = StringVar()
path_file2 = StringVar()
path_path = StringVar()
window.geometry('380x150')


这里我们定义了三个 String 类型的变量,用来保存文件地址和文件夹路径

然后我们进行简单的页面排版,只需要用到 Label,Entry 和 Button 就够了

label1 = Label(window, text="文件1:").grid(column=0, row=0)
txt1 = Entry(window, width="30", textvariable=path_file1).grid(column=1, row=0)
button1 = Button(window, text="文件选择1", command=selectFile1).grid(column=2, row=0)
label2 = Label(window, text="文件2:").grid(column=0, row=1)
txt2 = Entry(window, width="30", textvariable=path_file2).grid(column=1, row=1)
button2 = Button(window, text="文件选择2", command=selectFile2).grid(row=1, column=2)
label3 = Label(window, text="新文件路径:").grid(column=0, row=2)
txt3 = Entry(window, width="30", textvariable=path_path)
txt3.grid(column=1, row=2)
button3 = Button(window, text="新文件路径", command=selectPath).grid(row=2, column=2)
button4 = Button(window, text="开始处理", command=save_path).grid(row=3, column=1)


微信图片_20220522225804.png

用于获取文件和文件夹的函数

def selectFile1():
    path_ = filedialog.askopenfilename()
    path_file1.set(path_)


用于保存新生成文件和提示消息的函数

def save_path():
    path = txt3.get()
    deal_excel(path)
    res = "对比处理完成!"
    messagebox.showinfo('萝卜大杂烩', res)

这样,一个简单的 Excel 对比工具就完成啦

微信图片_20220522225808.png

好了,这样我们就完成了一个简易的 GUI 拆分 PDF 文件的工具喽

相关文章
|
30天前
|
搜索推荐 Python
使用Python自动化生成物业通知单
本文介绍如何使用Python结合Pandas和python-docx库自动化生成物业通知单。通过读取Excel数据并填充至Word模板,实现高效准确的通知单批量制作。包括环境准备、代码解析及效果展示,适用于物业管理场景。
62 14
|
8天前
|
Python
自动化微信朋友圈:Python脚本实现自动发布动态
本文介绍如何使用Python脚本自动化发布微信朋友圈动态,节省手动输入的时间。主要依赖`pyautogui`、`time`、`pyperclip`等库,通过模拟鼠标和键盘操作实现自动发布。代码涵盖打开微信、定位朋友圈、准备输入框、模拟打字等功能。虽然该方法能提高效率,但需注意可能违反微信使用条款,存在风险。定期更新脚本以适应微信界面变化也很重要。
106 60
|
12天前
|
人工智能 自然语言处理 JavaScript
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
Univer 是一款开源的 AI 办公工具,支持 Word、Excel 等文档处理的全栈解决方案。它具有强大的功能、高度的可扩展性和跨平台兼容性,适用于个人和企业用户,能够显著提高工作效率。
82 7
Univer:开源全栈 AI 办公工具,支持 Word、Excel、PPT 等文档处理和多人实时协作
|
27天前
|
Web App开发 IDE 测试技术
Selenium:强大的 Web 自动化测试工具
Selenium 是一款强大的 Web 自动化测试工具,包括 Selenium IDE、WebDriver 和 Grid 三大组件,支持多种编程语言和跨平台操作。它能有效提高测试效率,解决跨浏览器兼容性问题,进行性能测试和数据驱动测试,尽管存在学习曲线较陡、不稳定等缺点,但其优势明显,是自动化测试领域的首选工具。
150 17
Selenium:强大的 Web 自动化测试工具
|
2天前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
20天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
51 7
|
29天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
216 7
|
1月前
|
运维 Kubernetes Devops
自动化运维:从脚本到工具的演进之旅
在数字化浪潮中,自动化运维成为提升效率、保障系统稳定的关键。本文将探索自动化运维的发展脉络,从基础的Shell脚本编写到复杂的自动化工具应用,揭示这一技术变革如何重塑IT运维领域。我们将通过实际案例,展示自动化运维在简化工作流程、提高响应速度和降低人为错误中的重要作用。无论你是初学者还是资深专家,这篇文章都将为你提供宝贵的洞见和实用的技巧。
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
35 4
|
1月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!