【C++初阶:类和对象(上篇)】类的定义 | 类的访问限定符及封装 | 类的作用域 | 类的实例化 | 类对象模型 | this指针

简介: 【C++初阶:类和对象(上篇)】类的定义 | 类的访问限定符及封装 | 类的作用域 | 类的实例化 | 类对象模型 | this指针

文章目录

【写在前面】

面向过程和面向对象是一个比较复杂的问题,不是三两句话就能解释清楚的,所以在此文并不细谈,等后面各方面的知识充分起来再细谈。这篇文章是类和对象的入门。

一、初步认识面向过程和面向对象

C 语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。

C++ 是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成。

注意 C++ 并不是纯面向对象的语言,在前面就说过 C++ 的产生是为了更好的 C,所以 C++ 既有面向过程也有面向对象,可以混合编程

二、类的引入

❓ C和C++中使用结构体 ❔

//C++兼容C结构体的语法
struct ListNodeC
{
  int val;
  struct ListNodeC* next;
};
//C++同时也支持这种语法
struct ListNodeCpp
{
  int val;
  ListNodeCpp* next;
};
int main()
{
  struct ListNodeC n1;
  ListNodeCpp n2;
  return 0;
}

分析:上述代码如果换成 C 的编译器就会报错,因为 struct ListNodeCpp 组合在一起才是一个类型;而 C++ 支持 ListNodeCpp n2 的原因是 struct 已经升级成类了,这个类就可以定义类型。

C 语言面向过程 —— 数据和方法是分离的

C++ 面向对象 —— 数据和方法是封装在一起的

struct Student
{
  //方法
  void SetStudentInfo(const char* name, const char* gender, int age)
  {
    strcpy(_name, name);
    strcpy(_gender, gender);
    _age = age;
  }
  void PrintStudentInfo()
  {
    cout<<_name<<" "<<_gender<<" "<<_age<<endl;
  }
  //数据
  char _name[20];
  char _gender[3];
  int _age;
};
int main()
{
  Student s;
  s.SetStudentInfo("Peter", "男", 18);
  s.PrintStudentInfo();
  return 0;
}

注意 struct 可以定义类,但在 C++ 中更喜欢用 class 来代替 struct。

❗ 对比结构体/类实现栈 ❕

#include<iostream>
using namespace std;
namespace bitc
{
  struct Stack
  {
    int* a;
    int top;
    int capacity;
  };
  void StackInit(struct Stack* ps){}
  void StackPush(struct Stack* ps, int x){}
  //...
}
namespace bitcpp
{
  class Stack
  {
  public:
    void Init(){}
    void Push(int x){}
  private:
    int* a;
    int top;
    int capacity;
  };  
}
int main()
{
  struct bitc::Stack stc;
  bitc::StackInit(&stc);
  bitc::StackPush(&stc, 1);
  bitc::StackPush(&stc, 2);
  bitcpp::Stack stcpp;
  stcpp.Init();
  stcpp.Push(1);
  stcpp.Push(2);
  return 0;
} 

1️⃣ 对于程序的可读性来说:使用类可以把内部的 Stack 省略;但是使用结构体不能省略

2️⃣ 类实现的内部的方法比结构体实现的少一个参数,这个先放着,因为它跟下面的 this 指针有关系

3️⃣ class Stack 和 struct Stack 会命名冲突 (C++ 认为它俩都是类),所以这里使用命名空间解决

4️⃣ 上面这个程序的 bitcpp 域里的 Stack 类里有个 public,这里就牵扯出 C++ 的一个新概念 —— 类的访问限定符

三、类的定义

class className 
{
  //类体:由成员函数和成员变量组成
}; //注意后面的分号

📝 说明:class 为定义类的关键字,ClassName 为类的名字,{} 中为类的主体,注意类定义结束时后面分号。类中的元素称为类的成员:类中的数据称为类的属性或者成员变量; 类中的函数称为类的方法或者成员函数。

#include"person.h"
//显示基本信息,实现:输出名字、性别、年龄
void Person::showinfo()
{
  cout<<_name<<"-"<<_sex<<_age<<endl;
}

❗ 类的两种定义方式 ❕

1、声明和定义全部放在类体中,需要注意:成员函数如果在类中定义,编译器可能会将其当成内联函数处理 (一般是短小的定义)。

规范是把短小的成员函数直接在类里定义,也就是直接 inline;长的函数,声明和定义分离

2、 声明放在 .h 文件中,类的定义放在 .cpp 文件中

💨注意,一般情况下,更期望采用第二种方式。

四、类的访问限定符及封装

💦 访问限定符

C++ 实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用。

❗ 访问限定符说明 ❕

1️⃣ public 修饰的成员在类外可以直接被访问

2️⃣ protected 和 private 修饰的成员在类外不能直接被访问 (此处 protected 和 private 是类似的,它俩的区别要在继承才能体现)

3️⃣ 访问权限作用域从该访问限定符出现的位置开始直到下一个访问限定符出现时为止

4️⃣ class 的默认访问权限为 private,struct 为 public (因为 struct 要兼容 C)

class Stack
{
//想在类外直接访问的定义成公有
public:
  void Init(){}
  void Push(int x){}
  void Pop(){}
  void Destory(){}
//不想在类外直接访问的定义成私有
private:
  int* a;
  int top;
  int capacity;
};

❓ C++ 中 struct 和 class 的区别 ❔

  C++ 需要兼容 C 语言,所以 C++ 中 struct 可以当成结构体去使用。另外 C++ 中 struct 还可以用来定义类。和 class 定义类是一样的,目前区别是 struct 的成员默认访问方式是 public,class 的成员默认访问方式是 private (后面继承还有一点区别)。

❓ 在C++中struct可以当结构体也可以定义类,客观来说容易混淆,也没必要,C++为啥不修改呢 ❔

  早期的语法设计出来时,可能想的不全面,留下了一些坑,经过时间的推移,后面就不敢修改,因为这段时间可能用留下坑的语法写了大量的代码,你说你突然不支持旧语法了,虽然对新用户没啥,但对老用户打击却很大,大多数语言都是这样,这是语言的一个缺陷。历史上只有一个语言干过这种事 —— python,python3 和 python2 互不兼容

💦 封装

面向对象的三大特性:封装、继承、多态。这里只是最出名的三大特性,其实严格来说不止三大特性 —— 抽象、反射(java) 等

❓ 在类和对象阶段,我们只研究类的封装特性,那什么是封装呢 ❔

封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。

封装本质上是一种管理:比如西安的兵马俑,如果什么都不管,那么兵马俑可能会被破坏 (只是建议你不要破坏,但是你要破坏那也没办法);所以必须得改进,我们首先建了一座房子把兵马俑给封装起来,但是我们目的不是全封装起来,不让别人看,所以我们开放了售票通道,可以买票突破封装在合理的监管机制下进去参观。类也是一样,我们使用类数据和方法都封装到一下。不想给别人看到的,我们使用 protected/private 把成员封装起来。开放一些共有的成员函数对成员合理的访问。所以封装本质是一种管理。

❓ 封装好还是不封装好 ❔

【例子参考上面的兵马俑】

不封装虽然比较自由,可以随便访问数据和方法,但是可能会付出代价 —— 人需要规范操作,且都能恪守规则。

封装就是强制你恪守规则

五、类的作用域

C/C++ 里 {} 定义起来的就是域,就像之前的命名空间域。

这里类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员,需要使用 :: 作用域解析符指明成员属于哪个类域。

class Person
{
public:
  void PrintPersonInfo();
private:
  char _name[20];
  char _gender[3];
  int _age;
};
//这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{
  cout<<_name<<" "_gender<<" "<<_age<<endl;
}

❓ struct 和 class 在 C++ 中的使用规范 ❔

一般情况下定义类都要使用class,如果全部成员都需要是公有就使用struct。

六、类的实例化

❓ 成员变量/函数的声明和定义 ❔

📝 说明:

对于成员函数声明是 void Init () ; 定义是 void Queue : : Init () { } …

对于成员变量声明是 QueueNode* head ; 定义是 Queue q; …

声明和定义就像借钱,你跟朋友说下午要借你 100 元,朋友承诺了没问题 —— 这就是声明;下午,叮 。。。支付宝收款 100 元,朋友落实了承诺 —— 这就是定义。

再看上图,声明就是告诉你变量的类型、名称,但是还没有开空间;定义就是实例化对象开空间了。

如果 Queue.h 里初始化 ➡ QueueNode* head = nullptr ; ❓

  这里是缺省值,并不是定义,它依然还是声明 (这里以后学到构造函数会证明)。变量的定义是指开空间,跟是否初始化没关系。关于这里的缺省值是 C++11 的语法,后面再详讲。

❗ 用类类型创建对象的过程,称为类的实例化,一个类可以实例化出多个对象 ❕

1️⃣ 类只是一个模型一样的东西,限定了类有哪些成员,定义出一个类并没有分配实际的内存空间来存储它。

2️⃣ 一个类可以实例化出多个对象,实例化出的对象 占用实际的物理空间,存储类成员变量。

3️⃣ 打个比方。类实例化出对象就像现实中使用建筑设计图建造出房子,类就像是设计图,只设计出需要什么东西,但是并没有实体的建筑存在,同样类也只是一个设计,实例化出的对象才能实际存储数据,占用物理空间。

七、类对象模型

💦 如何计算类对象的大小

#include<iostream>
using namespace std;
struct QueueNode
{
  QueueNode* next;
  int val;
};
class Queue
{
public:
  void Init();
  void Push(int x);
  void Pop();
private:
  QueueNode* head;
  QueueNode* tail;
};
int main()
{
  Queue q1;
  q1.Init();
  q1.Push(1);
  q1.Push(2);
  q1.Push(3);
  Queue q2;
  q2.Init();
  q2.Push(1);
  cout << sizeof(q1) << endl;
  cout << sizeof(q2) << endl;
  return 0;
}

❓ q1 和 q2 的大小 ❔

q1 和 q2 一样大,这里不要被它们 Push 了多少个数据所迷惑了,这些 Push 的数据都在堆上 malloc 空间存储,q1 和 q2 只是在栈上存储了指针指向堆里,所以不管 Push 了多少个数据,它的大小都是相同的

就像设计图和房子,一个房子住三个人,另一个房子住一个人,不会影响图纸的大小

注意类是不占内存空间的,它在编译前是放在文件里的,存在磁盘上。编译后,变成指令存在公共代码段;它定义的对象才会占用内存空间。算类型的大小就等同于算类型定义的对象的大小

Queue 里有三个函数二个变量,所以共计 20 Byte ❔

实际上不是,q1 和 q2 的大小在 32 位平台下是 8 Byte,好像是说对象里只存储了成员变量的大小

实际上在计算类型大小或者类对象时,只考虑成员变量,因为对象中只存了成员变量,没有存成员函数

💦 类对象的存储方式猜测

💨 方案一:对象中包含类的各个成员

缺陷:每个对象中成员变量是不同的,但是调用同一份函数,如果按照此种方式存储,当一个类创建多个对象时,每个对象中都会保存一份代码,相同代码保存多次,浪费空间。

💨 方案二:只保存成员变量,成员函数存放在公共的代码段

❓ 观察下面类的大小是多少 ❔

#include<iostream>
using namespace std;
class A
{
public:
  void Print()
  {}
private:
  int i;
  char ch;
};
//没有成员变量的类
class B
{
public:
  void Print()
  {}
};
//空类
class C
{};
int main()
{
  cout << sizeof(A) << endl;
  cout << sizeof(B) << endl;
  cout << sizeof(C) << endl;
  return 0;
}

📝 说明:

这里 A 占 8 个字节 (同结构体内存对齐)、B 占 1 个字节、C 占 1 个字节

没有成员变量的类/空类为啥是 1 个字节,难道不是 0 吗 ❓

我们说了实际上在计算类型大小或者类对象时,只考虑成员变量,那它没有成员变量,应该是 0。但是这个地方不能是 0, 注意计算类型的大小本质上是算这个类型定义变量的大小。如果一个类没有成员,那么它的对象需要给 1 Byte 进行占位来标识对象的存在 —— C c1,c2; (如果没有空间你怎么表示 c1、c2 存在) ,这 1 字节不存储有效数据

❓ 没有成员变量的类和空类有什么意义 ❔

目前看不到这样的场景,以后学到仿函数和 STL 的时候就能体现了。

💦 结构体内存对齐规则

【结构体相关面试题】

1、 结构体怎么对齐? 为什么要进行内存对齐?

2、如何让结构体按照指定的对齐参数进行对齐

3、什么是大小端?如何测试某台机器是大端还是小端,有没有遇到过要考虑大小端的场景

结构体在 C 语言部分就学习了,这里就不细讲了,附上链接

《桃猿三结义:结构、枚举、联合》

八、this指针

💦 this指针的引出

class Date
{ 
public:
  //void Display(Date* this)
  void Display ()
  {
    cout <<_year<< "-" <<_month << "-"<< _day <<endl;
  }
  //void Init(Date* this ,int year , int month , int day)
  void Init(int year , int month , int day)
  {
    _year = year;//this->_year = year;
    _month = month;//this->_month = month;
    _day = day;//this->_day = day;
    Display();//this->Display(&d1/&d2);
  }
private:
  int _year ; //年
  int _month ; //月
  int _day ; //日
};
int main()
{
  Date d1, d2;
  d1.Init(2021,1,10);//d1.Init (&d1, 2021, 1, 10);
  d2.Init(2022,1,10);//d2.Init (&d2, 2022, 1, 10);
  d1.Display();//d1.Display(&d1);
  d2.Display();//d2.Display(&d2);
  return 0;
}

📝 说明:

我们经常会在 C++ 代码里看到变量前加一个杠 _ 或者在变量后加一个杠 _,这其实是 C++ 的规范用法, 这里的价值在如上代码就体现了 —— 如果不加杠,在初始化时就懵了 (year = year),加杠就代表它是成员变量

❓ 这里 d1 和 d2 是两块不同的空间,它们分别调用 Init 时,程序是怎么知道 _year、_month、_day 是 d1 还是 d2 ❔

我们说了这个函数不是对象里面的,它们是同一个函数,它是怎么知道 d1、d2 呢 (调试发现 d1 和 d2 是两块不同的空间) ?—— 运行程序,发现 C++ 就是区分唉!—— C++ 是怎么区分的 ?

其实编译器在 d1.Init (2021, 1, 10); 时会把 d1 的地址也传参 d1.Init (&d1, 2021, 1, 10);

而形参对应的变成了 void Init (Date* this ,int year , int month , int day)

且 _year、_month、_day 是声明,不能赋值,所以这里变成了 this->_year、this->_month、this->_day

注意 this-> 站在自己的角度可以把它补充出来,你写了编译器就不加,你不写编译器就加。但是你不能在实参和形参上补充,这是编译器干的活你不能强抢

是否可以在 Init 里调用 Display ❓

成员函数里面,我们不加的话,默认会在成员前面 + this->

this->Display() ;

对象里可以调用成员函数,成员函数里还可以调用成员函数,因为有 this 指针

💦 this指针的特性

1️⃣ this 指针的类型:类类型* const。

2️⃣ 只能在 “成员函数” 的内部使用。

3️⃣ this 指针本质上其实是一个成员函数的形参,是对象调用成员函数时,将对象地址作为实参传递给 this 形参。所以对象中不存储 this 指针。

4️⃣ this指针是成员函数第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传递,不需要用户传递。

【面试题】

1、this 指针存在哪里 ?(堆 | 栈 | 静态区 | 常量区)

常犯的错误:this 指针存在对象里面 !!!

this 指针是形参,形参和函数中的局部变量都是存在函数栈帧里的,所以 this 指针可以认为是存在栈的。

VS 下为了提高效率,this 指针是通过寄存器 ecx 传递的。

验证 ❓

调试代码后转到反汇编

2、this 指针可以为空吗 ?

class A
{ 
public:
  void Show()//void Show(A* this) 
  {
    cout << "Show()" << endl;
  }
  void Print()//void Print(A* this) 
  {
    cout << _a << endl;//this->_a;
  }
private:
  int _a;
};
int main()
{
  A* p = nullptr;
  p->Show();//p->Show(p);
  A* q = nullptr;
  q->Print();//q->Show(q);
  return 0;
}

❓ 上面程序的运行结果是什么 ❔

A. 编译不通过

B. 运行崩溃

C. 运行通过

📝 分析:

p->Show() ;

成员函数的地址不在对象中存储,存在公共代码段。这里调用成员函数,不会去访问 p 指向的空间,也就不存在空指针解引用了,这里只会把 p 传递给隐含的 this 指针,但是 Show 函数中也没有解引用 this 指针。所以这里选择 C 选项。

q->Print() ;

这里同上,Print 不在 p 里面,它在公共代码段,然后把 q 传递给隐含的 this 指针,至此没问题。但是在 Print 函数里访问成员变量时 _a 时会补充上 this->_a;,而这个指针是一个空指针,所以崩了。所以这里选择 B 选项。

易混淆:

A aa;
A* p = &&aa;
p->_a;//去p指向的空间访问_a,所以这是一个解引用行为
p->Show();//Show不是存在p指向的对象里,而是存在公共代码段,所以这里不是解引用。这里是把p传递给形参this*
aa.Show();//同上


相关文章
|
11天前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
51 18
|
11天前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
37 13
|
11天前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
37 5
|
11天前
|
存储 算法 搜索推荐
【C++面向对象——群体类和群体数据的组织】实现含排序功能的数组类(头歌实践教学平台习题)【合集】
1. **相关排序和查找算法的原理**:介绍直接插入排序、直接选择排序、冒泡排序和顺序查找的基本原理及其实现代码。 2. **C++ 类与成员函数的定义**:讲解如何定义`Array`类,包括类的声明和实现,以及成员函数的定义与调用。 3. **数组作为类的成员变量的处理**:探讨内存管理和正确访问数组元素的方法,确保在类中正确使用动态分配的数组。 4. **函数参数传递与返回值处理**:解释排序和查找函数的参数传递方式及返回值处理,确保函数功能正确实现。 通过掌握这些知识,可以顺利地将排序和查找算法封装到`Array`类中,并进行测试验证。编程要求是在右侧编辑器补充代码以实现三种排序算法
26 5
|
11天前
|
Serverless 编译器 C++
【C++面向对象——类的多态性与虚函数】计算图像面积(头歌实践教学平台习题)【合集】
本任务要求设计一个矩形类、圆形类和图形基类,计算并输出相应图形面积。相关知识点包括纯虚函数和抽象类的使用。 **目录:** - 任务描述 - 相关知识 - 纯虚函数 - 特点 - 使用场景 - 作用 - 注意事项 - 相关概念对比 - 抽象类的使用 - 定义与概念 - 使用场景 - 编程要求 - 测试说明 - 通关代码 - 测试结果 **任务概述:** 1. **图形基类(Shape)**:包含纯虚函数 `void PrintArea()`。 2. **矩形类(Rectangle)**:继承 Shape 类,重写 `Print
32 4
|
11天前
|
设计模式 IDE 编译器
【C++面向对象——类的多态性与虚函数】编写教学游戏:认识动物(头歌实践教学平台习题)【合集】
本项目旨在通过C++编程实现一个教学游戏,帮助小朋友认识动物。程序设计了一个动物园场景,包含Dog、Bird和Frog三种动物。每个动物都有move和shout行为,用于展示其特征。游戏随机挑选10个动物,前5个供学习,后5个用于测试。使用虚函数和多态实现不同动物的行为,确保代码灵活扩展。此外,通过typeid获取对象类型,并利用strstr辅助判断类型。相关头文件如&lt;string&gt;、&lt;cstdlib&gt;等确保程序正常运行。最终,根据小朋友的回答计算得分,提供互动学习体验。 - **任务描述**:编写教学游戏,随机挑选10个动物进行展示与测试。 - **类设计**:基类
26 3
|
2月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
76 2
|
2月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
128 5
|
2月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
138 4
|
2月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
195 4