用Python爬取分析【某东618】畅销商品销量数据,带你看看大家都喜欢买什么!

简介: 618购物节,辰哥准备分析一波购物节大家都喜欢买什么?本文以某东为例,Python**爬取**618活动的畅销商品数据,并进行**数据清洗**,最后以**可视化**的方式从不同角度去了解畅销商品中,名列前茅的商品是哪些?销售数据如何?用户好评如何?等等

618购物节,辰哥准备分析一波购物节大家都喜欢买什么?本文以某东为例,Python爬取618活动的畅销商品数据,并进行数据清洗,最后以可视化的方式从不同角度去了解畅销商品中,名列前茅的商品是哪些?销售数据如何?用户好评如何?等等

本文结构如下

1、爬取某东畅销商品数据

2、清洗数据并并进行简单分析

3、将数据进行可视化展示

数据的字段如下:

一共爬取了243条某东畅销商品数据

01、获取数据

1.   分析网页

在编写代码之前,先来分析一波网页。

上面是某东的畅销商品,通过辰哥分析分析,该网页有异步加载(前面10个商品是静态加载,剩下的是动态异步加载),因此我们需要写了个请求去获取数据。

2.   获取静态网页商品链接

商品的销售、评论等数据在商品详情页,这里先获取商品详情页链接

结果如下:

3.   获取动态网页商品链接

通过抓包可以获取到动态加载链接,并获取到商品标题和商品id(这里的商品id可以用于后面拼接商品详情页链接)

获取json数据后,提取出商品标题商品ID

4. 获取打折、原价、秒杀价

通过商品ID可以获取到商品打折、原价、秒杀价(这里有接口,接口是通过抓包获取的,感兴趣的可以去自己去尝试,不明白的可以直接使用)

这里将该功能封装成函数,通过传入商品ID就可以获取该商品的商品打折、原价、秒杀价

结果如下:

5. 获取评论数、好评数、中评数、差评数、好评率

通过商品ID可以获取到评论数、好评数、中评数、差评数、好评率(同样这里有接口,接口是通过抓包获取的,感兴趣的可以去自己去尝试,不明白的可以直接使用)

结果如下:

6.   保存到excel

接着开始遍历商品,并通过ID去获取商品的销售情况(步骤4和步骤5的函数),最后把数据保存到execl

定义表头

写入数据

其中的get_price和CommentCount是步骤4和步骤5的函数。count是excel中行数,因此在循环中count+1,依次写入下一行。

最终保存结果

一共爬取了243条某东畅销商品数据

02、数据分析&可视化

1.数据清洗

需要清洗的内容,主要有图中这三列(标题、打折、好评数)。

清洗目标

  1. 标题过长(长度控制在10内),不方便后面的画图
  2. 打折字段中含有折字,在进行排序时不能直接转数值型。
  3. 好评数中的,转为具体数值,如1.2万转为12000

清洗结果:

2.可视化-商品打折力度

从清洗后数据中取出:商品名称和打折这两列,进行【排序】从打折最大到打折最小。最后取出前15名进行可视化

核心代码如下:

可视化效果

3.可视化-好评率统计

从数据中取出:好评率这列,对不同的好评率进行统计,如好评率是100%(1)的商品多少件,好评率99%(0.99)的商品多少件等。

核心代码如下:

可视化效果

3.可视化-畅销商品销量排行

从数据中取出:商品名称和评论数这两列,这里根据评论数去作为销售依据,对商品的销量进行排序(高到低),并取出前15名进行可视化。

核心代码如下:

可视化效果

4.可视化-畅销商品前15名原价与秒杀价对比

在上面的分析中可以知道畅销商品的销量前15名,这里将这15件商品的原价和秒杀价进行可视化对比。

核心代码如下:

可视化效果

03、小结

本文以某东为例,Python爬取618活动的畅销商品数据,并进行数据清洗,最后以可视化的方式从不同角度去了解畅销商品中,名列前茅的商品是哪些?销售数据如何?用户好评如何?等等

不明白的地方可以在下方留言,一起交流。

相关文章
|
6天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
24 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
17天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
8天前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
60 37
Python时间序列分析工具Aeon使用指南
|
4天前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
38 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
5天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
1天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
3天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
25天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
20天前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
JSON 数据可视化 数据格式
Python 懂车帝全车系销量排行榜
Python 懂车帝全车系销量排行榜
Python 懂车帝全车系销量排行榜