一看就懂的MySQL的聚簇索引,以及聚簇索引是如何长高的

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 这一篇笔记我们简述一下MySQL的B+Tree索引到底是咋回事?聚簇索引索引到底是如何长高的。一点一点看,其实蛮好理解的。

这一篇笔记我们简述一下

  • MySQL的B+Tree索引到底是咋回事?
  • 聚簇索引索引到底是如何长高的。


一点一点看,其实蛮好理解的。


如果你看过了我之前的笔记,你肯定知道了MySQL进行CRUD是在内存中进行的,也就是在Buffer Pool中。然后你也知道了当内存中没有MySQL需要的数据时,MySQL会从Disk中通过IO操作将数据读入内存中。读取的单位呢就是:数据页


一般数据页长下面这样



没错,数据页中存储着真实的数据,而且数据页在内存中是以双向联表的方式组织起来的!如下图



而在B+Tree的设定中,它要求主键索引时递增的,也就是说如果主键索引时递增的话,那么就要求右侧的数据页中的所有数据均比左侧数据页中的数据大。但是很明显上图并不符合,因此需要通过页分裂来调整成下面这样。



好,现在你回想一下,之前你肯定有听说过:MySQL的B+Tree聚簇索引,只有叶子节点才存储真实的数据,而非叶子节点中存储的是索引数据,而且叶子节点之间是通过双向链表连接起来


没错,那所有的B+Tree的叶子节点就是上图中的数据页,并且它们确实是通过双向链表关联起来的!


我们接着往下看,如果只看上图由数据页连接起来的双向链表的话,这时如果我们检索id=7的数据行,那会发生什么?


很明显我们要从头开始扫描!

那你可能会问:方才不是说B+Tree要求主键是递增的嘛?并且有页分裂机制保证右边的数据页中的所有数据均比它左边的数据页的索引值大。那进行二分查找不行嘛?

答:是的,确实可以在单个数据页中进行二分查找,但是数据页之间的组织关系是链表呀,所以从头开始遍历是避免不了的。

那MySQL怎么办的呢?


如下图:MySQL针对诸多的数据页抽象出了一个索引目录



那有了这个索引目录我们再在诸多的数据页中检索时看起来就容易多了!直接就拥有了二分检索的能力!


而且这个所以目录其实也是存在于数据页中的,不同于叶子节点的是,它里面知识存储了索引信息,而叶子节点中存储的是真实数据?


而索引页的诞生也就意味着B+Tree的雏形已经诞生了!


随着用户不断的select,buffer pool中的数据页的越来越多,那么索引页中的数据也会水涨船高。当现有的索引体量超过16KB(一个数据页的容量)时就不得不搞一个新的索引页来存储新的索引信息。这时这颗B+Tree就会慢慢变得越来越胖。


那你也知道B+Tree是B树的变种,而B树其实可以是2-3树、2-3-4数....等等M阶树的泛称,当每个节点中能存储的元素达到上限后,树就会长高(上一篇文章有讲过)。


就像下图这样:



推荐阅读#


  1. MySQL的修仙之路,图文谈谈如何学MySQL、如何进阶!(已发布)
  2. 面前突击!33道数据库高频面试题,你值得拥有!(已发布)
  3. 大家常说的基数是什么?(已发布)
  4. 讲讲什么是慢查!如何监控?如何排查?(已发布)
  5. 对NotNull字段插入Null值有啥现象?(已发布)
  6. 能谈谈 date、datetime、time、timestamp、year的区别吗?(已发布)
  7. 了解数据库的查询缓存和BufferPool吗?谈谈看!(已发布)
  8. 你知道数据库缓冲池中的LRU-List吗?(已发布)
  9. 谈谈数据库缓冲池中的Free-List?(已发布)
  10. 谈谈数据库缓冲池中的Flush-List?(已发布)
  11. 了解脏页刷回磁盘的时机吗?(已发布)
  12. 用十一张图讲清楚,当你CRUD时BufferPool中发生了什么!以及BufferPool的优化!(已发布)
  13. 听说过表空间没?什么是表空间?什么是数据表?(已发布)
  14. 谈谈MySQL的:数据区、数据段、数据页、数据页究竟长什么样?了解数据页分裂吗?谈谈看!(已发布)
  15. 谈谈MySQL的行记录是什么?长啥样?(已发布)
  16. 了解MySQL的行溢出机制吗?(已发布)
  17. 说说fsync这个系统调用吧! (已发布)
  18. 简述undo log、truncate、以及undo log如何帮你回滚事物! (已发布)
  19. 我劝!这位年轻人不讲MVCC,耗子尾汁! (已发布)
  20. MySQL的崩溃恢复到底是怎么回事? (已发布)
  21. MySQL的binlog有啥用?谁写的?在哪里?怎么配置 (已发布)
  22. MySQL的bin log的写入机制 (已发布)
  23. 删库后!除了跑路还能干什么?(已发布)
  24. 自导自演的面试现场,趣学数据库的10种文件(已发布)
  25. 大型面试现场:一条update sql执行都经历什么?(已发布)
  26. 大型翻车现场:如何实现记录存在的话就更新,如果记录不存在的话就插入。(已发布)
  27. 视频+图文串讲:MySQL 行锁、间隙锁、Next-Key-Lock、以及实现记录存在的话就更新,如果记录不存在的话就插入如何保证并发安全(已发布)
  28. 自导自演的面试现场:说说char 和 varchar的区别你了解多少?。(已发布)
  29. 自导自演的面试现场之--你竟然不了解MySQL的组提交?。(已发布)
  30. 全网最清楚的:MySQL的insert buffer和change buffer 串讲(已发布)
  31. Double Write并不难理解
  32. 简述MySQL的三大范式
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
242 66
|
1月前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
174 9
|
3月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
16天前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
78 22
 MySQL秘籍之索引与查询优化实战指南
|
18天前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
68 10
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
79 18
|
30天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
59 8
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
73 7
|
1月前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
101 5
|
1月前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
144 7