分布式系统设计实践

简介: 分布式系统设计实践

前言

之前,我们了解了很多分布式系统的理论,也去分析了常见的分布式系统的设计策略。那么有了这些的铺垫,我们今天,来聊一下,常见的一些分布式系统设计的实践。周末让大家,过了个儿童节,颓废的生活不能有,学习走起!

我们主要讨论几个通用性问题:

  • 全局ID生成
  • 哈希取模分配
  • 路由表
  • 一致性哈希
  • 数据拆分


全局ID生成

我之前单独写了一篇文章,来介绍分布式系统环境中,系统唯一ID生成,有需要的,大家可以翻一下以前的文章。

首先呢,为何需要全局ID。在分布式系统环境中,由于使用了集群以及分布式应用形式,另外,数据库也存在着水平、垂直切分情况,必然需要有全局的ID,保证一致性。也满足CAP数据一致性要求。

分布式系统环境之前,单机时代,ID生成,往往通过以下几种方式:

Mysql 通过维护一张ID表

Oracle通过序列去生成ID

分布式系统环境中,数据库访问是高成本的操作,那么如何才能合理可用是大家需要了解的。

  1. UUID
    UUID有以下几部分构成:
    1) 当前日期和时间
    2) 时钟序列
    3) 全局唯一的IEEE机器识别号,如果有网卡,会从MAC地址获得,如果没有,则会以其他方式获得,感兴趣的同学,可以自己研究下
    优点:API简单,易用
UUID.randomKey().toString()

缺点:占用空间大,可读性不强,字符串无法定制

2.ID 生成表模式
目前一般来说,对于业务量不高的系统,达不到分库分表的需求的,一般主键ID都是通过Mysql的自增ID生成。

CREATE TABLE litigation_case_info (
id bigint(0) NOT NULL AUTO_INCREMENT COMMENT '主键id',
caseId varchar(30) NOT NULL COMMENT '案件申请唯一标识',
courtCode varchar(30) NULL COMMENT '法院代码',
courtName varchar(50) NULL COMMENT '法院名称',
 PRIMARY KEY (id)
) COMMENT = '诉讼险案件基本信息表';
  1. 从高可用角度考虑,需要调整自增初始值和步长,来让多台机器同时可以生成唯一的ID
    优点:简单,易用
    缺点:依赖mysql
  2. Twitter 的 SnowFlake
    github介绍,Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.目前初始版本已被内部废弃使用,等待最新版本的开源。但是我们仍然可以学习,这么优秀的实现
    地址:https://github.com/twitter-archive/snowflake
    Snowflake生成64位的ID,包括:
    1) 41位的时间序列
    2) 10位的机器标识
    3) 12位的计数顺序号
    优点:高性能、低延迟、独立应用,时间有序
    缺点:需要独立开发部署
  3. 结合缓存方案
    采用缓存,提前缓存ID方式,高性能、低延迟,但是会造成,ID不连贯。

哈希取模分配

哈希是最常见的数据分布形式。实现方式是通过可以描述记录的业务id或者key,通过hash函数计算取余。余数则作为处理该数据的服务器索引编号

只需要通过计算,就可以映射数据和处理节点关系,问题在于,ID容易出现分布不均等情况

一致性哈希

一致性哈希算法,是一种分布式哈希(DHT)算法,主要解决了分布式哈希的单调性和分散性问题。

单调性,指的要对已经存在的内容能够正常映射,避免在节点增减过程中,无法命中,类似于上文说的哈希取模分配,如果几点不断增加,计算方式就会失去平衡。分散性,指的就是解决哈希取模分配的不平衡问题、

实现方式如下:

按照hash方法,将对应的key放入一个2^32空间内,首尾相连,形成一个环。

优点:可以任意动态添加、删除节点

路由表模式

路由表,是配置好一张表,按照权重,选择对应的存储路径。适合场景,有明确的路由目的与指向,比如抽奖后台。

对于抽奖后台的实现,可以采用路由表,按照抽奖权重,数据拆分,路由存储。

优点:简单明了

缺点:数据中央集权,存在单点风险。

数据拆分

如果能够找到一个合理的方式,去采用路由表模式,也会很好的解决数据问题,那么就出现了,数据拆分的形式。

举例说明:

Cobar,是alibaba开源的分布式数据库中间件,可以按照配置的路由规则,完成数据拆分。可以自定义拆分路由规则。具体内容,后续,我们会写代码详细说明

Sharding-jdbc,当当开源的分布式数据库中间件,也是完成对于数据的拆分、切片,具体内容,后续,我们会写代码详细说明

Mycat,分布式数据库中间件实现了分库分表,具体内容,后续,我们会写代码详细说明


目录
相关文章
|
3天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
15 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
25天前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
70 4
|
2月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
71 8
|
4月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
3年前的云栖大会,我们发布分布式云容器平台ACK One,随着3年的发展,很高兴看到ACK One在混合云,分布式云领域帮助到越来越多的客户,今天给大家汇报下ACK One 3年来的发展演进,以及如何帮助客户解决分布式领域多云多集群管理的挑战。
阿里云容器服务 ACK One 分布式云容器企业落地实践
|
5月前
|
存储 分布式计算 Hadoop
【揭秘Hadoop背后的秘密!】HDFS读写流程大曝光:从理论到实践,带你深入了解Hadoop分布式文件系统!
【8月更文挑战第24天】Hadoop分布式文件系统(HDFS)是Hadoop生态系统的关键组件,专为大规模数据集提供高效率存储及访问。本文深入解析HDFS数据读写流程并附带示例代码。HDFS采用NameNode和DataNode架构,前者负责元数据管理,后者承担数据块存储任务。文章通过Java示例演示了如何利用Hadoop API实现数据的写入与读取,有助于理解HDFS的工作原理及其在大数据处理中的应用价值。
130 1
|
5月前
|
机器学习/深度学习 人工智能 负载均衡
【AI大模型】分布式训练:深入探索与实践优化
在人工智能的浩瀚宇宙中,AI大模型以其惊人的性能和广泛的应用前景,正引领着技术创新的浪潮。然而,随着模型参数的指数级增长,传统的单机训练方式已难以满足需求。分布式训练作为应对这一挑战的关键技术,正逐渐成为AI研发中的标配。
220 5
|
5月前
|
存储 Kubernetes 监控
深入浅出分布式事务:理论与实践
在数字化时代的浪潮中,分布式系统如同星辰大海般浩瀚而深邃。本文将带你航行于这片星辰大海,探索分布式事务的奥秘。我们将从事务的基本概念出发,逐步深入到分布式事务的核心机制,最后通过一个实战案例,让你亲自体验分布式事务的魅力。让我们一起揭开分布式事务的神秘面纱,领略其背后的科学与艺术。
99 1
|
5月前
|
Go API 数据库
[go 面试] 分布式事务框架选择与实践
[go 面试] 分布式事务框架选择与实践
|
5月前
|
UED 存储 数据管理
深度解析 Uno Platform 离线状态处理技巧:从网络检测到本地存储同步,全方位提升跨平台应用在无网环境下的用户体验与数据管理策略
【8月更文挑战第31天】处理离线状态下的用户体验是现代应用开发的关键。本文通过在线笔记应用案例,介绍如何使用 Uno Platform 优雅地应对离线状态。首先,利用 `NetworkInformation` 类检测网络状态;其次,使用 SQLite 实现离线存储;然后,在网络恢复时同步数据;最后,通过 UI 反馈提升用户体验。
117 0