浅析利用高斯核函数进行半监督分类

简介: Laplacian RegularizationIn Least Square learning methods, we calculate the Euclidean distance between sample points to find a classifier plane. However, here we calculate the minimum dist

Laplacian Regularization

In Least Square learning methods, we calculate the Euclidean distance between sample points to find a classifier plane. However, here we calculate the minimum distance along the manifold of points and based on which we find a classifier plane.

In semi-supervised learning applications, we assume that the inputs x must locate in some manifold and the outputs y vary smoothly in that manifold. In the case of classification, inputs in the same manifold are supposed to have the same label. In the case of regression, the maps of inputs to outputs are supposed to vary smoothly in some manifold.

Take the Gaussian kernal function for example:

fθ(x)=j=1nθjK(x,xj),K(x,c)=exp(xc22h2)

There are unlabeled samples {xi}n+ni=n+1 that also be utilized:
fθ(x)=j=1n+nθjK(x,xj)

In order to make all of the samples (labeled and unlabeled) have local similarity, it is necessary to add a constraint condition:
minθ12i=1n(fθ(xi)yi)2+λ2θ2+v4i,i=1n+nWi,i(fθ(xi)fθ(xi))2

whose first two terms relate to the 2 regularized least square learning and last term is the regularized term relates to semi-supervised learning ( Laplacian Regularization). v0 is a parameter to tune the smoothness of the manifold. Wi,i0 is the similarity between xi and xi . Not familiar with similarity? Refer to:

http://blog.csdn.net/philthinker/article/details/70212147

Then how to solve the optimization problem? By the diagonal matrix D , whose elements are sums of row elements of W , and the Laplace matrix L that equals to DW , it is possible to transform the optimization problem above to a general 2 constrained Least Square problem. For simplicity, we omit the details here.

n=200; a=linspace(0,pi,n/2);
u=-10*[cos(a)+0.5 cos(a)-0.5]'+randn(n,1);
v=10*[sin(a) -sin(a)]'+randn(n,1);
x=[u v]; y=zeros(n,1); y(1)=1; y(n)=-1;
x2=sum(x.^2,2); hh=2*1^2;
k=exp(-(repmat(x2,1,n)+repmat(x2',n,1)-2*x*(x'))/hh);
w=k;
t=(k^2+1*eye(n)+10*k*(diag(sum(w))-w)*k)\(k*y);

m=100; X=linspace(-20,20,m)';X2=X.^2;
U=exp(-(repmat(u.^2,1,m)+repmat(X2',n,1)-2*u*(X'))/hh);
V=exp(-(repmat(v.^2,1,m)+repmat(X2',n,1)-2*v*(X'))/hh);
figure(1); clf; hold on; axis([-20 20 -20 20]);
colormap([1 0.7 1; 0.7 1 1]);
contourf(X,X,sign(V'*(U.*repmat(t,1,m))));
plot(x(y==1,1),x(y==1,2),'bo');
plot(x(y==-1,1),x(y==-1,2),'rx');
plot(x(y==0,1),x(y==0,2),'k.');

LR

相关文章
|
1天前
|
数据采集 人工智能 安全
|
10天前
|
云安全 监控 安全
|
2天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
930 150
|
2天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1662 8
|
7天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
616 152
|
9天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
585 15
|
9天前
|
人工智能 自然语言处理 API
Next AI Draw.io:当AI遇见Draw.io图表绘制
Next AI Draw.io 是一款融合AI与图表绘制的开源工具,基于Next.js实现,支持自然语言生成架构图、流程图等专业图表。集成多款主流大模型,提供智能绘图、图像识别优化、版本管理等功能,部署简单,安全可控,助力技术文档与系统设计高效创作。
670 151