例
>>> >>> x[1:2, 1:3] array([[4, 5]]) >>> x[1:2, [1, 2]] array([[4, 5]])
了解情况的最简单方法可能是考虑结果形状。索引操作分为两部分,即由基本索引(不包括整数)定义的子空间和来自高级索引部分的子空间。需要区分两种索引组合:
高级索引由切片分隔,Ellipsis或newaxis。例如。x[arr1, :, arr2]
高级索引彼此相邻。例如但不是 因为在这方面是一个高级索引。x[..., arr1, arr2, :] x[arr1, :, 1]1
在第一种情况下,高级索引操作产生的维度首先出现在结果数组中,然后是子空间维度。在第二种情况下,高级索引操作的维度将插入到结果数组中与初始数组中相同的位置(后一种逻辑使简单的高级索引行为就像切片一样)。
例
假设x.shape为(10,20,30)并且ind是(2,3,4)形索引intp数组,则其形状为(10,2,3,4,30),因为(20,)形子空间已被替换具有(2,3,4)形的广播索引子空间。如果我们让i,j,k循环遍及(2,3,4)形子空间 。此示例产生的结果与。result = x[...,ind,:]result[...,i,j,k,:] = x[...,ind[i,j,k],:]x.take(ind, axis=-2)
例
设x.shape(10,20,30,40,50)并假设ind_1 并ind_2可以广播到形状(2,3,4)。然后 x[:,ind_1,ind_2]具有形状(10,2,3,4,40,50),因为来自X的(20,30)形子空间已经被索引的(2,3,4)子空间替换。但是,它 x[:,ind_1,:,ind_2]具有形状(2,3,4,10,30,50),因为在索引子空间中没有明确的位置,所以它在开头就被添加了。始终可以使用 .transpose()在任何需要的位置移动子空间。请注意,此示例无法使用复制take。
布尔数组索引
当obj是布尔类型的数组对象时,会发生此高级索引,例如可能从比较运算符返回。x[obj.nonzero()]如上所述,单个布尔索引数组实际上与obj.nonzero()返回obj.ndim显示objTrue元素的整数索引数组的元组(长度)相同。但是,它更快。obj.shape == x.shape
如果,返回一个1维数组,该数组填充了与obj 值对应的x元素。搜索顺序为行主,C风格。如果物镜具有在该外侧是的边界的条目值X,则索引错误将被提高。如果obj小于x,则与填充它相同。obj.ndim == x.ndimx[obj]TrueTrueFalse
例
一个常见的用例是过滤所需的元素值。例如,可能希望从阵列中选择非NaN的所有条目:
>>> >>> x = np.array([[1., 2.], [np.nan, 3.], [np.nan, np.nan]]) >>> x[~np.isnan(x)] array([ 1., 2., 3.])
或者希望为所有负面元素添加常量:
>>> >>> x = np.array([1., -1., -2., 3]) >>> x[x < 0] += 20 >>> x array([ 1., 19., 18., 3.])
通常,如果索引包括布尔数组,则结果将与插入obj.nonzero()相同位置并使用上述整数数组索引机制相同。 相当于 。x[ind_1, boolean_array, ind_2]x[(ind_1,) + boolean_array.nonzero() + (ind_2,)]
如果只有一个布尔数组且没有整数索引数组,则这是直截了当的。必须注意确保布尔索引具有与其应该使用的维度完全相同的维度。
例
从数组中,选择总和小于或等于2的所有行:
>>> >>> x = np.array([[0, 1], [1, 1], [2, 2]]) >>> rowsum = x.sum(-1) >>> x[rowsum <= 2, :] array([[0, 1], [1, 1]])
但如果rowsum还有两个维度:
>>> >>> rowsum = x.sum(-1, keepdims=True) >>> rowsum.shape (3, 1) >>> x[rowsum <= 2, :] # fails IndexError: too many indices >>> x[rowsum <= 2] array([0, 1])
由于额外的维度,最后一个只给出了第一个元素。比较rowsum.nonzero()以了解此示例。
通过obj.nonzero()类比可以最好地理解组合多个布尔索引数组或布尔与整数索引数组 。该函数ix_ 还支持布尔数组,并且可以毫无意外地工作。
例
使用布尔索引选择加起来为偶数的所有行。同时,应使用高级整数索引选择列0和2。使用该ix_功能可以通过以下方式完成:
>>> >>> x = array([[ 0, 1, 2], ... [ 3, 4, 5], ... [ 6, 7, 8], ... [ 9, 10, 11]]) >>> rows = (x.sum(-1) % 2) == 0 >>> rows array([False, True, False, True]) >>> columns = [0, 2] >>> x[np.ix_(rows, columns)] array([[ 3, 5], [ 9, 11]])
没有np.ix_呼叫或只选择对角线元素。
或者没有np.ix_(比较整数数组示例):
>>> >>> rows = rows.nonzero()[0] >>> x[rows[:, np.newaxis], columns] array([[ 3, 5], [ 9, 11]])
详细说明
这些是一些详细的注释,对于日常索引(无特定顺序)并不重要:
本机NumPy索引类型intp可能与默认的整数数组类型不同。intp是足以安全索引任何数组的最小数据类型; 对于高级索引,它可能比其他类型更快。
对于高级分配,通常不保证迭代顺序。这意味着如果元素设置不止一次,则无法预测最终结果。
空(元组)索引是零维数组的完整标量索引。 如果是零维则x[()]返回标量,否则返回x视图。另一方面,x[...]总是返回一个视图。
如果索引中存在零维数组并且它是完整的整数索引,则结果将是标量而不是零维数组。(不会触发高级索引。)
当存在省略号(...)但没有大小(即替换为零 :)时,结果仍将始终为数组。如果没有高级索引,则为视图,否则为副本。
nonzero布尔数组的等价性不适用于零维布尔数组。
当高级索引操作的结果没有元素但单个索引超出范围时,是否IndexError引发了未定义(例如,超出范围)。x[[], [123]]123
当在赋值期间发生转换错误时(例如,使用字符串序列更新数值数组),被分配的数组可能最终处于不可预测的部分更新状态。但是,如果发生任何其他错误(例如超出范围索引),则阵列将保持不变。
高级索引结果的内存布局针对每个索引操作进行了优化,并且不能假设特定的内存顺序。
当使用一个子类(尤其是其操纵它的形状),默认ndarray.__setitem__行为会调用__getitem__的 基本索引而不是先进的索引。对于这样的子类,最好ndarray.__setitem__使用基类 ndarray视图调用数据。如果子类不返回视图,则必须执行此操作__getitem__。
现场访问
也可以看看
数据类型对象(dtype),标量
如果ndarray对象是结构化数组 ,则可以通过使用字符串索引数组来访问数组的字段,类似于字典。
索引x['field-name']返回数组的新视图,该视图与x具有相同的形状(当字段是子数组时除外)但是数据类型x.dtype['field-name']并且仅包含指定字段中的部分数据。还 记录阵列标量可以被“索引”这种方式。
索引到结构化数组也可以使用字段名称列表来完成, 例如 x[['field-name1','field-name2']]。从NumPy 1.16开始,这将返回仅包含这些字段的视图。在旧版本的numpy中它返回了一个副本。有关多字段索引的详细信息,请参阅结构化阵列的用户指南部分。
如果访问的字段是子数组,则子数组的尺寸将附加到结果的形状。
例
>>> >>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64, (3,3))]) >>> x['a'].shape (2, 2) >>> x['a'].dtype dtype('int32') >>> x['b'].shape (2, 2, 3, 3) >>> x['b'].dtype dtype('float64')
Flat Iterator索引
x.flat返回一个迭代器,它将遍历整个数组(以C-contiguous样式,最后一个索引变化最快)。只要选择对象不是元组,也可以使用基本切片或高级索引对此迭代器对象建立索引。这应该从x.flat一维视图的事实中清楚。它可以用于具有1维C风格平面索引的整数索引。因此,任何返回数组的形状都是整数索引对象的形状。