数据分析python,线性回归

简介: 数据分析python,线性回归

本节是python实现一元回归的代码部分,理论参考链接: link.
代码下载地址link.
代码可直接赋值运行,如有问题请留言

1 环境准备

import numpy as np
import matplotlib.pyplot as pl
import matplotlib
matplotlib.rcParams['font.sans-serif']='SimHei'
matplotlib.rcParams['font.family']='sans-serif'
matplotlib.rcParams['axes.unicode_minus']=False

这些是需要的python组件和画图需要的包,matplotlib是画图的设置

2 读取文件方法设置

def loadDataset(filename):
    X=[]
    Y=[]
    with open(filename,'rb') as f:
        for idx,line in enumerate(f):
            line=line.decode('utf-8').strip()
            if not line:
                continue
                
            eles=line.split(',')
            
            if idx==0:
                numFea=len(eles)
                
            eles=list(map(float,eles))#map返回一个迭代对象
            
            X.append(eles[:-1])
            Y.append([eles[-1]])
    return np.array(X),np.array(Y)

3 预测值方法

def h(theta,X):

return np.dot(X,theta)

4 完成方法设计

def J(theta,X,Y):

return np.sum(np.dot((h(theta,X)-Y).T,(h(theta,X)-Y))/(2*m))

5 梯度下降方法

def bgd(alpha,maxloop,epsilon,X,Y):
    m,n=X.shape
    
    theta=np.zeros((2,1))
    
    count=0
    converged=False
    error=np.inf
    errors=[]
    thetas={0:[theta[0,0]],1:[theta[1,0]]}
    
    while count<=maxloop:
        if(converged):
            break
        
        count=count+1
        temp1=theta[0,0]-alpha/m*(h(theta,X)-Y).sum()
        temp2=theta[1,0]-alpha/m*(np.dot(X[:,1][:,np.newaxis].T,(h(theta,X)-Y))).sum()
        
        #同步更新
        theta[0,0]=temp1
        theta[1,0]=temp2
        thetas[0].append(temp1)
        thetas[1].append(temp2)
        
        error=J(theta,X,Y)
        errors.append(error)
        
        if(error<epsilon):
            converged=True
    return theta,errors,thetas

6 读取文件

先预览下读取的数据,这里用的一组不太好的数据
在这里插入图片描述

X,Y=loadDataset('./data/price_diff.csv')
print(X.shape)
print(Y.shape)

(243, 1)
(243, 1)

m,n=X.shape
X=np.concatenate((np.ones((m,1)),X),axis=1)
X.shape

(243, 2)

7 模型参数设置

alpha=0.000000000000000003
maxloop=3000
epsilon=0.01
result=bgd(alpha,maxloop,epsilon,X,Y)
theta,errors,thetas=result

xCopy=X.copy()
xCopy.sort(0)
yHat=h(theta,xCopy)
xCopy[:,1].shape,yHat.shape,theta.shape

((243,), (243, 1), (2, 1))

8 结果绘图

pl.xlabel(u'1')
pl.ylabel(u'2')
pl.plot(xCopy[:,1],yHat,color='red')
pl.scatter(X[:,1].flatten(),Y.T.flatten())
pl.show()

在这里插入图片描述
误差与迭代次数绘图

pl.xlim(-1,3000)

pl.xlabel(u'迭代次数')
pl.ylabel(u'代价函数')
pl.plot(range(len(errors)),errors)
pl.show()

在这里插入图片描述

目录
相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
161 10
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
91 3
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
81 3
|
5天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
25天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
135 4
数据分析的 10 个最佳 Python 库
|
20天前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
104 5

热门文章

最新文章