大数据中必须要掌握的 Flink SQL 详细剖析 (一)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。

Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。


自 2015 年开始,阿里巴巴开始调研开源流计算引擎,最终决定基于 Flink 打造新一代计算引擎,针对 Flink 存在的不足进行优化和改进,并且在 2019 年初将最终代码开源,也就是我们熟知的 Blink。Blink 在原来的 Flink 基础上最显著的一个贡献就是 Flink SQL 的实现。


Flink SQL 是面向用户的 API 层,在我们传统的流式计算领域,比如 Storm、Spark Streaming 都会提供一些 Function 或者 Datastream API,用户通过 Java 或 Scala 写业务逻辑,这种方式虽然灵活,但有一些不足,比如具备一定门槛且调优较难,随着版本的不断更新,API 也出现了很多不兼容的地方。


在这个背景下,毫无疑问,SQL 就成了我们最佳选择,之所以选择将 SQL 作为核心 API,是因为其具有几个非常重要的特点:


  • SQL 属于设定式语言,用户只要表达清楚需求即可,不需要了解具体做法;
  • SQL 可优化,内置多种查询优化器,这些查询优化器可为 SQL 翻译出最优执行计划;
  • SQL 易于理解,不同行业和领域的人都懂,学习成本较低;
  • SQL 非常稳定,在数据库 30 多年的历史中,SQL 本身变化较少;
  • 流与批的统一,Flink 底层 Runtime 本身就是一个流与批统一的引擎,而 SQL 可以做到 API 层的流与批统一。


1. Flink SQL 常用算子



SELECT


SELECT 用于从 DataSet/DataStream 中选择数据,用于筛选出某些列。

示例:

SELECT * FROM Table; // 取出表中的所有列

SELECT name,age FROM Table; // 取出表中 name 和 age 两列

与此同时 SELECT 语句中可以使用函数和别名,例如我们上面提到的 WordCount 中:

SELECT word, COUNT(word) FROM table GROUP BY word;


WHERE


WHERE 用于从数据集/流中过滤数据,与 SELECT 一起使用,用于根据某些条件对关系做水平分割,即选择符合条件的记录。


示例:

SELECT name,age FROM Table where name LIKE ‘% 小明 %’;

SELECT * FROM Table WHERE age = 20;

WHERE 是从原数据中进行过滤,那么在 WHERE 条件中,Flink SQL 同样支持 =、<、>、<>、>=、<=,以及 AND、OR 等表达式的组合,最终满足过滤条件的数据会被选择出来。并且 WHERE 可以结合 IN、NOT IN 联合使用。举个例子:

SELECT name, age
FROM Table
WHERE name IN (SELECT name FROM Table2)


DISTINCT


DISTINCT 用于从数据集/流中去重根据 SELECT 的结果进行去重。

示例:

SELECT DISTINCT name FROM Table;

对于流式查询,计算查询结果所需的 State 可能会无限增长,用户需要自己控制查询的状态范围,以防止状态过大。


GROUP BY


GROUP BY 是对数据进行分组操作。例如我们需要计算成绩明细表中,每个学生的总分。

示例:

SELECT name, SUM(score) as TotalScore FROM Table GROUP BY name;


UNION  和  UNION ALL


UNION 用于将两个结果集合并起来,要求两个结果集字段完全一致,包括字段类型、字段顺序。不同于 UNION ALL 的是,UNION 会对结果数据去重。

示例:

SELECT * FROM T1 UNION (ALL) SELECT * FROM T2;


JOIN


JOIN 用于把来自两个表的数据联合起来形成结果表,Flink 支持的 JOIN 类型包括:

JOIN - INNER JOIN

LEFT JOIN - LEFT OUTER JOIN

RIGHT JOIN - RIGHT OUTER JOIN

FULL JOIN - FULL OUTER JOIN

这里的 JOIN 的语义和我们在关系型数据库中使用的 JOIN 语义一致。


示例:

JOIN(将订单表数据和商品表进行关联)

SELECT * FROM Orders INNER JOIN Product ON Orders.productId = Product.id

LEFT JOIN 与 JOIN 的区别是当右表没有与左边相 JOIN 的数据时候,右边对应的字段补 NULL 输出,RIGHT JOIN 相当于 LEFT JOIN 左右两个表交互一下位置。FULL JOIN 相当于 RIGHT JOIN 和 LEFT JOIN 之后进行 UNION ALL 操作。


示例:

SELECT * FROM Orders LEFT JOIN Product ON Orders.productId = Product.id
SELECT * FROM Orders RIGHT JOIN Product ON Orders.productId = Product.id
SELECT * FROM Orders FULL OUTER JOIN Product ON Orders.productId = Product.id


Group Window


根据窗口数据划分的不同,目前 Apache Flink 有如下 3 种 Bounded Window:


Tumble,滚动窗口,窗口数据有固定的大小,窗口数据无叠加;

Hop,滑动窗口,窗口数据有固定大小,并且有固定的窗口重建频率,窗口数据有叠加;

Session,会话窗口,窗口数据没有固定的大小,根据窗口数据活跃程度划分窗口,窗口数据无叠加。


Tumble Window


Tumble 滚动窗口有固定大小,窗口数据不重叠,具体语义如下:


image.png


Tumble 滚动窗口对应的语法如下:


SELECT
    [gk],
    [TUMBLE_START(timeCol, size)],
    [TUMBLE_END(timeCol, size)],
    agg1(col1),
    ...
    aggn(colN)
FROM Tab1
GROUP BY [gk], TUMBLE(timeCol, size)


其中:


[gk] 决定了是否需要按照字段进行聚合;

TUMBLE_START 代表窗口开始时间;

TUMBLE_END 代表窗口结束时间;

timeCol 是流表中表示时间字段;

size 表示窗口的大小,如 秒、分钟、小时、天。


举个例子,假如我们要计算每个人每天的订单量,按照 user 进行聚合分组:


SELECT user,
      TUMBLE_START(rowtime, INTERVAL ‘1’ DAY) as wStart,
      SUM(amount)
FROM Orders
GROUP BY TUMBLE(rowtime, INTERVAL ‘1’ DAY), user;


Hop Window


Hop 滑动窗口和滚动窗口类似,窗口有固定的 size,与滚动窗口不同的是滑动窗口可以通过 slide 参数控制滑动窗口的新建频率。因此当 slide 值小于窗口 size 的值的时候多个滑动窗口会重叠,具体语义如下:


image.png


Hop 滑动窗口对应语法如下:


SELECT
    [gk],
    [HOP_START(timeCol, slide, size)] ,
    [HOP_END(timeCol, slide, size)],
    agg1(col1),
    ...
    aggN(colN)
FROM Tab1
GROUP BY [gk], HOP(timeCol, slide, size)


每次字段的意思和 Tumble 窗口类似:


[gk] 决定了是否需要按照字段进行聚合;

HOP_START 表示窗口开始时间;

HOP_END 表示窗口结束时间;

timeCol 表示流表中表示时间字段;

slide 表示每次窗口滑动的大小;

size 表示整个窗口的大小,如 秒、分钟、小时、天。


举例说明,我们要每过一小时计算一次过去 24 小时内每个商品的销量:


SELECT product,
      SUM(amount)
FROM Orders
GROUP BY HOP(rowtime, INTERVAL '1' HOUR, INTERVAL '1' DAY), product


Session Window


会话时间窗口没有固定的持续时间,但它们的界限由 interval 不活动时间定义,即如果在定义的间隙期间没有出现事件,则会话窗口关闭。


image.png

Seeeion 会话窗口对应语法如下:


SELECT
    [gk],
    SESSION_START(timeCol, gap) AS winStart,
    SESSION_END(timeCol, gap) AS winEnd,
    agg1(col1),
     ...
    aggn(colN)
FROM Tab1
GROUP BY [gk], SESSION(timeCol, gap)


[gk] 决定了是否需要按照字段进行聚合;

SESSION_START 表示窗口开始时间;

SESSION_END 表示窗口结束时间;

timeCol 表示流表中表示时间字段;

gap 表示窗口数据非活跃周期的时长。


例如,我们需要计算每个用户访问时间 12 小时内的订单量:


SELECT user,
      SESSION_START(rowtime, INTERVAL ‘12’ HOUR) AS sStart,
      SESSION_ROWTIME(rowtime, INTERVAL ‘12’ HOUR) AS sEnd,
      SUM(amount)
FROM Orders
GROUP BY SESSION(rowtime, INTERVAL ‘12’ HOUR), user


Table API 和 SQL 捆绑在 flink-table Maven 工件中。必须将以下依赖项添加到你的项目才能使用 Table API 和 SQL:


<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table_2.11</artifactId>
    <version>${flink.version}</version>
</dependency>
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
11天前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
49 15
|
13天前
|
SQL 安全 数据处理
揭秘数据脱敏神器:Flink SQL的神秘力量,守护你的数据宝藏!
【9月更文挑战第7天】在大数据时代,数据管理和处理尤为重要,尤其在保障数据安全与隐私方面。本文探讨如何利用Flink SQL实现数据脱敏,为实时数据处理提供有效的隐私保护方案。数据脱敏涉及在处理、存储或传输前对敏感数据进行加密、遮蔽或替换,以遵守数据保护法规(如GDPR)。Flink SQL通过内置函数和表达式支持这一过程。
37 2
|
13天前
|
SQL 大数据 数据处理
奇迹降临!解锁 Flink SQL 简单高效的终极秘籍,开启数据处理的传奇之旅!
【9月更文挑战第7天】在大数据处理领域,Flink SQL 因其强大功能与简洁语法成为开发者首选。本文分享了编写高效 Flink SQL 的实用技巧:理解数据特征及业务需求;灵活运用窗口函数(如 TUMBLE 和 HOP);优化连接操作,优先采用等值连接;合理选择数据类型以减少计算资源消耗。结合实际案例(如实时电商数据分析),并通过定期性能测试与调优,助力开发者在大数据处理中更得心应手,挖掘更多价值信息。
28 1
|
17天前
|
SQL JSON 分布式计算
ODPS SQL ——列转行、行转列这回让我玩明白了!
本文详细介绍了在MaxCompute中如何使用TRANS_ARRAY和LATERAL VIEW EXPLODE函数来实现列转行的功能。
|
12天前
|
SQL 分布式计算 大数据
大数据开发SQL代码编码原则和规范
这段SQL编码原则强调代码的功能完整性、清晰度、执行效率及可读性,通过统一关键词大小写、缩进量以及禁止使用模糊操作如select *等手段提升代码质量。此外,SQL编码规范还详细规定了代码头部信息、字段与子句排列、运算符前后间隔、CASE语句编写、查询嵌套、表别名定义以及SQL注释的具体要求,确保代码的一致性和维护性。
17 0
|
15天前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
61 11
|
20天前
|
存储 分布式计算 大数据
MaxCompute 数据分区与生命周期管理
【8月更文第31天】随着大数据分析需求的增长,如何高效地管理和组织数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个专为海量数据设计的计算服务,它提供了丰富的功能来帮助用户管理和优化数据。本文将重点讨论 MaxCompute 中的数据分区策略和生命周期管理方法,并通过具体的代码示例来展示如何实施这些策略。
51 1
|
25天前
数据平台问题之在数据影响决策的过程中,如何实现“决策/行动”阶段
数据平台问题之在数据影响决策的过程中,如何实现“决策/行动”阶段
|
28天前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。