「offer来了」计算机操作系统篇,10个知识点带你巩固进程线程关系

简介: 操作系统对于前端来说考察的内容并不多,所以在今天的文章中将依据比较常考的知识点进行归纳总结。下面开始本文的讲解~

7.png🎹序言


操作系统对于前端来说考察的内容并不多,所以在今天的文章中将依据比较常考的知识点进行归纳总结。

下面开始本文的讲解~


🎸一、思维导图


我们先用一张思维导图来梳理操作系统相关的面试题。具体如下👇

1.png

下面开始归纳操作系统常见的面试题。


🎺二、常见面试题


1、进程和线程以及它们的区别

  • 进程是对程序运行时的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发;
  • 线程是进程的子任务,是CPU调度和分配的基本单位,用于保证程序的实时性,实现进程内部的并发;
  • 一个程序至少有一个进程,一个进程至少有一个线程,线程依赖于进程而存在;
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。


2、进程间通信的几种方式


(1)管道(pipe)及命名管道(named pipe)

  • 管道可用于具有亲缘关系的父子进程间的通信。
  • 命名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。


(2)信号(signal)

  • 信号是一种比较复杂的通信方式,用于通知和接收某个已经发生的进程事件。


(3)消息队列

  • 消息队列是消息的链接表,它克服了以上两种通信方式中信号量有限的缺点。
  • 具有写权限的进程可以按照一定的规则向消息队列中添加新信息。
  • 对消息队列有读权限的进程则可以从消息队列中读取信息。


(4)共享内存

  • 可以说这是最有用的进程间通信方式。
  • 它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据的更新。
  • 这种方式需要依靠某种同步操作,如互斥锁和信号量等。


(5)信号量

  • 主要作为进程之间及同一种进程的不同线程之间的同步和互斥手段;


(6)套接字

  • 这是一种更为一般的进程间通信机制,它可用于网络中不同机器之间的进程间通信,应用非常广泛。


3、线程同步的方式


(1)互斥量 Synchronized/Lock

  • 采用互斥对象机制,只有拥有互斥对象的线程才有访问公共资源的权限。
  • 因为互斥对象只有一个,所以可以保证公共资源不会被多个线程同时访问。


(2)信号量 Semphare

  • 它允许同一时刻多个线程访问同一资源,但是需要控制同一时刻访问此资源的最大线程数量


(3)事件(信号)Wait/Notify

  • 通过通知操作的方式来保持多线程同步,还可以方便的实现多线程优先级的比较操作。


4、什么是死锁?死锁产生的条件?


(1)死锁的概念

  • 在两个或者多个并发进程中,如果每个进程持有某种资源而又等待其它进程释放它或它们现在保持着的资源,在未改变这种状态之前都不能向前推进,称这一组进程产生了死锁。
  • 通俗的讲,就是两个或多个进程无限期的阻塞相互等待的一种状态。


(2)死锁产生的四个必要条件

  • 互斥:至少有一个资源必须属于非共享模式,即一次只能被一个进程使用;若其他申请使用该资源,那么申请进程必须等到该资源被释放为止。
  • 占有并等待:一个进程必须占有至少一个资源,并等待另一个资源,而该资源为其他进程所占有。
  • 非抢占:进程不能被抢占,即资源只能被进程在完成任务后自愿释放。
  • 循环等待:若干进程之间形成一种头尾相接的环形等待资源关系。


(3)处理死锁的基本策略和常用方法

  • 解决死锁的基本方法主要有预防死锁避免死锁检测死锁解除死锁鸵鸟策略等。


5、进程有哪几种状态?

**(1)就绪状态:**进程已获得除处理机以外的所需资源,等待分配处理机资源。

**(2)运行状态:**占用处理机资源运行,处于此状态的进程数小于等于CPU数。

(3)阻塞状态: 进程等待某种条件,在条件未满足之前无法执行。


6、线程有几种状态?

在 Java虚拟机 中,线程从最初的创建到最终的消亡,要经历若干个状态

  • 创建 (new) 、就绪 (runnable/start) 、运行 (running) 、阻塞 (blocked) 、等待 (waiting) 、时间等待 (time waiting) 和 消亡 (dead/terminated)
  • 在给定的时间点上,一个线程只能处于一种状态。


7、段式存储管理


(1)段式存储管理是什么?

段式存储管理是一种符合用户视角的内存分配管理方案

在段式存储管理中,将程序的地址空间划分为若干段(segment),如代码段、数据段、堆栈段;

这样每个进程有一个二维地址空间,相互独立,互不干扰。


(2)段式管理的优缺点

  • 优点没有内碎片(因为段大小可变,可通过改变段大小来消除内碎片)。
  • 缺点:但段换入换出时,会产生外碎片(比如 4k 的段换 5k 的段,会产生 1k 的外碎片)。


(3)页式存储管理方案

页式存储管理方案是一种用户视角下内存与物理内存相分离的内存分配管理方案

在页式存储管理中,将程序的逻辑地址划分为固定大小的页(page) ,而物理内存划分为同样大小的帧,程序加载时,可以将任意一页放入内存中任意一个帧,这些帧不必连续,从而实现了离散分离


(4)页式存储管理的优缺点

  • 优点:没有外碎片(因为页的大小固定)。
  • 缺点:但会产生内碎片(一个页可能填充不满)。


8、进程调度策略


(1)FCFS(先来先服务,队列实现,非抢占的)

先请求 CPU 的进程先分配到 CPU


(2)SJF(最短作业优先调度算法)

平均等待时间最短,但难以知道下一个 CPU 区间长度。


(3)优先级调度算法(可以是抢占的,也可以是非抢占的)

优先级越高越先分配到 CPU ,相同优先级先到先服务。

存在的主要问题是:低优先级进程无穷等待 CPU ,会导致无穷阻塞或饥饿。

解决方案:老化(即对超过一定时间还未使用的进程进行删除)。


(4)时间片轮转调度算法(可抢占的)

队列中没有进程被分配超过一个时间片的 CPU 时间,除非它是唯一可运行的进程。

如果进程的 CPU 区间超过了一个时间片,那么该进程就被抢占并放回就绪队列。


(5)多级队列调度算法

就绪队列分成多个独立的队列,每个队列都有自己的调度算法,队列之间采用固定优先级抢占调度。

其中,一个进程根据自身属性被永久地分配到一个队列中。


(6)多级反馈队列调度算法

与多级队列调度算法相比,其允许进程在队列之间移动:若进程使用过多 CPU 时间,那么它会被转移到更低的优先级队列

在较低优先级队列等待时间过长的进程会被转移到更高优先级队列,以防止饥饿发生。


9、页面调度算法

FIFO先进先出算法:在操作系统中经常被用到,比如作业调度(主要实现简单,很容易想到)。

LRU(Least recently use)最近最少使用算法:根据开始使用时间到现在为止的时间长短来判断。

LFU(Least frequently use)最少使用次数算法:根据使用次数来判断。

OPT(Optimal replacement)最优置换算法:理论的最优,所谓理论,就是要保证置换出去的是不再被使用的页,或者是在实际内存中最晚使用的页。


10、局部性原理

(1) 时间上的局部性最近被访问的页在不久的将来还会被访问。

(2)空间上的局部性内存中被访问的页周围的页也很可能被访问。


🎻三、结束语


大家可以看到,对于操作系统的面试来说,基本上都在围绕着进程和线程这两个概念交谈。所以在学习的过程中,可以以这两个点来作为主线来对知识点进行扩充和归纳。

关于操作系统的面经归纳到这里就结束啦!希望对大家有帮助~



相关文章
|
2天前
|
算法 调度 UED
探索操作系统的心脏——进程管理机制
本文将深入探讨操作系统中至关重要的部分——进程管理机制。我们将从基本概念入手,逐步解析进程的定义、状态及其在操作系统中的角色。随后,我们会详细讨论进程调度算法,包括先来先服务、短作业优先、时间片轮转和优先级调度等,分析它们的优势与应用情景。最后,通过实例展示这些算法在实际系统运作中的运用,帮助读者更好地理解进程管理的核心原理。
|
2天前
|
算法 调度 Python
探索操作系统的内核——一个简单的进程调度示例
【9月更文挑战第17天】在这篇文章中,我们将深入探讨操作系统的核心组件之一——进程调度。通过一个简化版的代码示例,我们将了解进程调度的基本概念、目的和实现方式。无论你是初学者还是有一定基础的学习者,这篇文章都将帮助你更好地理解操作系统中进程调度的原理和实践。
|
5天前
|
算法 调度 Python
深入理解操作系统:进程管理与调度
【9月更文挑战第14天】操作系统是计算机系统的核心,负责管理和控制计算机硬件资源,并提供用户和应用程序所需的服务。本文将介绍操作系统中进程管理与调度的基本概念、原理和实现方法,并通过代码示例进行说明。通过阅读本文,读者可以深入了解操作系统的工作原理和机制,提高对计算机系统的理解和掌握能力。
|
1天前
|
算法 调度 开发者
深入理解操作系统的进程调度策略
【9月更文挑战第18天】本文将通过浅显易懂的方式,带你深入了解和掌握操作系统中一个至关重要的概念——进程调度。我们将从基础概念出发,逐步探讨进程调度的策略、算法及其在操作系统中的实现方式。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往操作系统深层知识的大门,让你对进程调度有更深刻的理解和认识。
9 3
|
5天前
|
开发者 Python
深入浅出操作系统:进程与线程的奥秘
【8月更文挑战第46天】在数字世界的幕后,操作系统扮演着至关重要的角色。本文将揭开进程与线程这两个核心概念的神秘面纱,通过生动的比喻和实际代码示例,带领读者理解它们的定义、区别以及如何在编程中运用这些知识来优化软件的性能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供新的视角和实用技巧。
|
1天前
|
消息中间件 Python
深入理解操作系统的进程间通信(IPC)机制
本文将探讨操作系统中的核心概念——进程间通信(IPC),揭示其在系统运作中的重要性及实现方式。通过分析不同类型的IPC手段,如管道、信号、共享内存等,帮助读者更好地理解操作系统的内部工作原理及其在实际应用中的表现。
11 1
|
2天前
|
算法 Linux 调度
探索操作系统的心脏:进程管理与调度策略
【9月更文挑战第17天】在数字世界的复杂迷宫中,操作系统扮演着守护者的角色,确保每一次计算的旅程都顺畅无阻。本文将深入探讨操作系统的核心机制——进程管理与调度,揭示它们如何在微观层面影响宏观的系统性能。从理解进程的本质出发,我们将逐步揭开现代操作系统如何通过精妙的调度策略,平衡多任务处理的效率与公平性。通过深入浅出的语言,即便是技术新手也能领略到这一数字世界奇迹背后的智慧。
|
2天前
|
算法 调度 UED
深入理解操作系统中的进程调度
【9月更文挑战第17天】在操作系统的心脏深处,进程调度机制如同一位精心编排交响乐的指挥,确保系统的和谐与效率。本文将揭开进程调度的神秘面纱,从理论到实践,深入浅出地探讨其背后的原理与实现。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深刻的见解,让你对操作系统有更全面的理解。让我们一起走进这场技术与智慧的盛宴,探索进程调度的秘密吧!
|
3天前
|
消息中间件 存储 大数据
深入理解操作系统中的进程间通信(IPC)机制
本文旨在探讨操作系统中进程间通信(IPC)的核心机制与其重要性。通过对不同IPC手段如管道、信号、消息队列及共享内存等的详细解析,揭示它们如何高效地促进进程间的信息交换与同步。文章不仅阐述各种IPC技术的实现原理,还探讨了它们在实际系统应用中的场景与优化策略,为系统开发者提供全面而深入的理解。
|
3天前
|
消息中间件 程序员 数据处理
探究操作系统中的进程间通信(IPC)机制及其在现代软件开发中的应用
本文深入探讨了操作系统中的核心概念——进程间通信(IPC),揭示了其在现代软件开发中的关键作用。通过对各种IPC机制如管道、消息队列、共享内存等的详细分析,本文旨在为读者提供一个清晰的理解框架,帮助他们掌握如何在实际应用中有效利用这些技术以实现进程间的协同工作。此外,文章还将探讨IPC在高并发环境下的性能优化策略,以及如何避免常见的IPC编程错误。通过结合理论与实践,本文不仅适合希望深入了解操作系统原理的技术人员阅读,也对那些致力于提升软件质量和开发效率的程序员具有重要参考价值。
10 0

热门文章

最新文章