Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_AER_AI)紫外线气溶胶指数 (UVAI) 的近实时高分辨率数据集

NRTI/L3_AER_AI

 

This dataset provides near real-time high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Aerosol Index (AAI).

The AAI is based on wavelength-dependent changes in Rayleigh scattering in the UV spectral range for a pair of wavelengths. The difference between observed and modelled reflectance results in the AAI. When the AAI is positive, it indicates the presence of UV-absorbing aerosols like dust and smoke. It is useful for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning.

The wavelengths used have very low ozone absorption, so unlike aerosol optical thickness measurements, AAI can be calculated in the presence of clouds. Daily global coverage is therefore possible.

For this L3 AER_AI product, the absorbing_aerosol_index is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths.


数据集提供了紫外线气溶胶指数 (UVAI) 的近实时高分辨率图像,也称为吸收气溶胶指数 (AAI)。

AAI 基于一对波长的 UV 光谱范围内瑞利散射的波长相关变化。观察到的和模拟的反射率之间的差异导致了 AAI。当 AAI 为正值时,表明存在吸收紫外线的气溶胶,如灰尘和烟雾。它可用于跟踪粉尘爆发、火山灰和生物质燃烧引起的偶发气溶胶羽流的演变。

所使用的波长对臭氧的吸收非常低,因此与气溶胶光学厚度测量不同,AAI 可以在有云的情况下计算。因此,每日全球报道是可能的。

对于此 L3 AER_AI 产品,吸收气溶胶指数是通过在 354 nm 和 388 nm 波长处进行的一对测量计算得出的。


NRTI L3 Product

To make our NRTI L3 products, we use harpconvert to grid the data.

Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(absorbing_aerosol_index,sensor_altitude,sensor_azimuth_angle,
     sensor_zenith_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_NRTI_L2__AER_AI_20181113T080042_20181113T080542_05618_01_010200_20181113T083707.nc
output.h5


Sentinel-5 Precursor

Sentinel-5 Precursor is a satellite launched on 13 October 2017 by the European Space Agency to monitor air pollution. The onboard sensor is frequently referred to as Tropomi (TROPOspheric Monitoring Instrument).

All of the S5P datasets, except CH4, have two versions: Near Real-Time (NRTI) and Offline (OFFL). CH4 is available as OFFL only. The NRTI assets cover a smaller area than the OFFL assets, but appear more quickly after acquisition. The OFFL assets contain data from a single orbit (which, due to half the earth being dark, contains data only for a single hemisphere).

Because of noise on the data, negative vertical column values are often observed in particular over clean regions or for low SO2 emissions. It is recommended not to filter these values except for outliers, i.e. for vertical columns lower than -0.001 mol/m^2.

The original Sentinel 5P Level 2 (L2) data is binned by time, not by latitude/longitude. To make it possible to ingest the data into Earth Engine, each Sentinel 5P L2 product is converted to L3, keeping a single grid per orbit (that is, no aggregation across products is performed).

Source products spanning the antimeridian are ingested as two Earth Engine assets, with suffixes _1 and _2.

The conversion to L3 is done by the harpconvert tool using the bin_spatial operation. The source data is filtered to remove pixels with QA values less than:

  • 80% for AER_AI
  • 75% for the tropospheric_NO2_column_number_density band of NO2
  • 50% for all other datasets except for O3 and SO2

The O3_TCL product is ingested directly (without running harpconvert).

Dataset Availability

2018-07-10T11:17:44 - 2021-09-05T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_AER_AI")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
absorbing_aerosol_index A measure of the prevalence of aerosols in the atmosphere, calculated by [this equation](https://earth.esa.int/web/sentinel/technical-guides/sentinel-5p/level-2/aerosol-index) using the 354/388 wavelength pair. -25 39
sensor_altitude Altitude of the satellite with respect to the geodetic sub-satellite point (WGS84). 828543 856078 m
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.09 67 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 88 degrees


* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


数据提供:

The use of Sentinel data is governed by the Copernicus Sentinel Data Terms and Conditions.

代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI')
  .select('absorbing_aerosol_index')
  .filterDate('2019-06-01', '2019-06-06');
var band_viz = {
  min: -1,
  max: 2.0,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P Aerosol');
Map.setCenter(-118.82, 36.1, 5);


相关文章
|
21天前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
114 49
|
21天前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
|
1天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
6天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
|
2天前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
30 13
|
2天前
|
机器学习/深度学习 人工智能 边缘计算
24/7全时守护:AI视频监控技术的深度实现与应用分享
本文深入解析了AI视频监控系统在车间安全领域的技术实现与应用,涵盖多源数据接入、边缘计算、深度学习驱动的智能分析及高效预警机制,通过具体案例展示了系统的实时性、高精度和易部署特性,为工业安全管理提供了新路径。
|
7天前
|
机器学习/深度学习 人工智能 TensorFlow
探索AI技术在医疗健康领域的应用
随着人工智能技术的不断发展,其在医疗健康领域的应用也日益广泛。本文将介绍AI技术在医疗健康领域的应用,包括医学影像分析、智能诊断和治疗建议、药物研发等方面。通过代码示例,我们将展示如何使用Python和TensorFlow构建一个简单的神经网络模型来进行医学影像分析。
34 13
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
随着人工智能技术的不断发展,自然语言处理(NLP)已经成为了一个重要的应用领域。本文将介绍一些常见的NLP任务和算法,并通过代码示例来展示如何实现这些任务。我们将讨论文本分类、情感分析、命名实体识别等常见任务,并使用Python和相关库来实现这些任务。最后,我们将探讨NLP在未来的发展趋势和挑战。
|
9天前
|
数据采集 机器学习/深度学习 人工智能
AI在医疗诊断中的应用与挑战
随着人工智能(AI)技术的飞速发展,其在医疗领域的应用也日益广泛。从辅助医生进行疾病诊断到提供个性化治疗方案,AI技术正在改变着传统医疗模式。然而,AI在医疗诊断中的应用并非一帆风顺,面临着数据质量、模型可解释性、法规政策等一系列挑战。本文将从AI在医疗诊断中的具体应用场景出发,探讨其面临的主要挑战及未来发展趋势。

热门文章

最新文章

推荐镜像

更多