Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI和LH)气溶胶指数数据集

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_AER_AI和LH)气溶胶指数数据集

OFFL/L3_AER_AI

This dataset provides offline high-resolution imagery of the UV Aerosol Index (UVAI), also called the Absorbing Aerosol Index (AAI).


The AAI is based on wavelength-dependent changes in Rayleigh scattering in the UV spectral range for a pair of wavelengths. The difference between observed and modelled reflectance results in the AAI. When the AAI is positive, it indicates the presence of UV-absorbing aerosols like dust and smoke. It is useful for tracking the evolution of episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning.


The wavelengths used have very low ozone absorption, so unlike aerosol optical thickness measurements, AAI can be calculated in the presence of clouds. Daily global coverage is therefore possible.


For this L3 AER_AI product, the absorbing_aerosol_index is calculated with a pair of measurements at the 354 nm and 388 nm wavelengths. The COPERNICUS/S5P/OFFL/L3_SO2 product has the absorbing_aerosol_index calculated using the 340 nm and 380 nm wavelengths.

OFFL/L3_AER_AI


该数据集提供了紫外线气溶胶指数 (UVAI) 的离线高分辨率图像,也称为吸收气溶胶指数 (AAI)。


AAI 基于一对波长的 UV 光谱范围内瑞利散射的波长相关变化。观察到的和模拟的反射率之间的差异导致了 AAI。当 AAI 为正值时,表明存在吸收紫外线的气溶胶,如灰尘和烟雾。它可用于跟踪粉尘爆发、火山灰和生物质燃烧引起的偶发气溶胶羽流的演变。


所使用的波长对臭氧的吸收非常低,因此与气溶胶光学厚度测量不同,AAI 可以在有云的情况下计算。因此,每日全球报道是可能的。


对于此 L3 AER_AI 产品,吸收气溶胶指数是通过在 354 nm 和 388 nm 波长处进行的一对测量计算得出的。 COPERNICUS/S5P/OFFL/L3_SO2 产品具有使用 340 nm 和 380 nm 波长计算的吸收气溶胶指数。


OFFL L3 Product

To make our OFFL L3 products, we find areas within the product's bounding box with data using a command like this:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time})'
S5P_OFFL_L2__AER_AI_20181030T213916_20181030T232046_05427_01_010200_20181105T210529.nc
grid_info.h5


We then merge all the data into one large mosaic (area-averaging values for pixels that may have different values for different times). From the mosaic, we create a set of tiles containing orthorectified raster data.

Example harpconvert invocation for one tile:

harpconvert --format hdf5 --hdf5-compression 9
-a 'absorbing_aerosol_index_validity>50;derive(datetime_stop {time});
bin_spatial(2001, 50.000000, 0.01, 2001, -120.000000, 0.01);
keep(absorbing_aerosol_index,sensor_altitude,sensor_azimuth_angle,
     sensor_zenith_angle,solar_azimuth_angle,solar_zenith_angle)'
S5P_OFFL_L2__AER_AI_20181030T213916_20181030T232046_05427_01_010200_20181105T210529.nc
output.h5


Dataset Availability

2018-07-04T13:34:21 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_AER_AI")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
absorbing_aerosol_index A measure of the prevalence of aerosols in the atmosphere, calculated by [this equation](https://earth.esa.int/web/sentinel/technical-guides/sentinel-5p/level-2/aerosol-index) using the 354/388 wavelength pair. -21 39
sensor_altitude Altitude of the satellite with respect to the geodetic sub-satellite point (WGS84). 828543 856078 m
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.87 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8 88 degrees


* = Values are estimated

影像属性:

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI')
  .select('absorbing_aerosol_index')
  .filterDate('2019-06-01', '2019-06-06');
var band_viz = {
  min: -1,
  max: 2.0,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P Aerosol');
Map.setCenter(-118.82, 36.1, 5);


相关文章
|
23天前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
49 8
|
21天前
|
数据采集 自然语言处理 搜索推荐
基于qwen2.5的长文本解析、数据预测与趋势分析、代码生成能力赋能esg报告分析
Qwen2.5是一款强大的生成式预训练语言模型,擅长自然语言理解和生成,支持长文本解析、数据预测、代码生成等复杂任务。Qwen-Long作为其变体,专为长上下文场景优化,适用于大型文档处理、知识图谱构建等。Qwen2.5在ESG报告解析、多Agent协作、数学模型生成等方面表现出色,提供灵活且高效的解决方案。
114 49
|
14天前
|
机器学习/深度学习 人工智能 数据处理
【AI系统】NV Switch 深度解析
英伟达的NVSwitch技术是高性能计算领域的重大突破,旨在解决多GPU系统中数据传输的瓶颈问题。通过提供比PCIe高10倍的带宽,NVLink实现了GPU间的直接数据交换,减少了延迟,提高了吞吐量。NVSwitch则进一步推动了这一技术的发展,支持更多NVLink接口,实现无阻塞的全互联GPU系统,极大提升了数据交换效率和系统灵活性,为构建强大的计算集群奠定了基础。
40 3
|
17天前
|
机器学习/深度学习 存储 人工智能
AI助力电子邮件安全防护,CISO解析新策略
AI助力电子邮件安全防护,CISO解析新策略
|
21天前
|
人工智能
深度解析AI在医疗诊断中的最新应用与挑战
深度解析AI在医疗诊断中的最新应用与挑战
|
21天前
|
数据采集 存储 自然语言处理
基于Qwen2.5的大规模ESG数据解析与趋势分析多Agent系统设计
2022年中国上市企业ESG报告数据集,涵盖制造、能源、金融、科技等行业,通过Qwen2.5大模型实现报告自动收集、解析、清洗及可视化生成,支持单/多Agent场景,大幅提升ESG数据分析效率与自动化水平。
|
24天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
64 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
72 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
57 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
64 0

热门文章

最新文章

推荐镜像

更多