Google Earth Engine ——数据全解析专辑(COPERNICUS/S1_GRD)20154至今哨兵-1号合成孔径雷达 (SAR) 数据集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S1_GRD)20154至今哨兵-1号合成孔径雷达 (SAR) 数据集

The Sentinel-1 mission provides data from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument at 5.405GHz (C band). This collection includes the S1 Ground Range Detected (GRD) scenes, processed using the Sentinel-1 Toolbox to generate a calibrated, ortho-corrected product. The collection is updated daily. New assets are ingested within two days after they become available.


This collection contains all of the GRD scenes. Each scene has one of 3 resolutions (10, 25 or 40 meters), 4 band combinations (corresponding to scene polarization) and 3 instrument modes. Use of the collection in a mosaic context will likely require filtering down to a homogeneous set of bands and parameters. See this article for details of collection use and preprocessing. Each scene contains either 1 or 2 out of 4 possible polarization bands, depending on the instrument's polarization settings. The possible combinations are single band VV or HH, and dual band VV+VH and HH+HV:

  1. VV: single co-polarization, vertical transmit/vertical receive
  2. HH: single co-polarization, horizontal transmit/horizontal receive
  3. VV + VH: dual-band cross-polarization, vertical transmit/horizontal receive
  4. HH + HV: dual-band cross-polarization, horizontal transmit/vertical receive


Each scene also includes an additional 'angle' band that contains the approximate incidence angle from ellipsoid in degrees at every point. This band is generated by interpolating the 'incidenceAngle' property of the 'geolocationGridPoint' gridded field provided with each asset.

Each scene was pre-processed with Sentinel-1 Toolbox using the following steps:

  1. Thermal noise removal
  2. Radiometric calibration
  3. Terrain correction using SRTM 30 or ASTER DEM for areas greater than 60 degrees latitude, where SRTM is not available. The final terrain-corrected values are converted to decibels via log scaling (10*log10(x)).


For more information about these pre-processing steps, please refer to the Sentinel-1 Pre-processing article. For further advice on working with Sentinel-1 imagery, see Guido Lemoine's tutorial on SAR basics and Mort Canty's tutorial on SAR change detection.


This collection is computed on-the-fly. If you want to use the underlying collection with raw power values (which is updated faster), see COPERNICUS/S1_GRD_FLOAT.


Sentinel-1 任务提供来自双极化 C 波段合成孔径雷达 (SAR) 仪器的数据,频率为 5.405GHz(C 波段)。该集合包括 S1 地面范围检测 (GRD) 场景,使用 Sentinel-1 工具箱处理以生成校准的正射校正产品。该系列每天更新。新资产在可用后的两天内被摄取。


此集合包含所有 GRD 场景。每个场景具有 3 种分辨率(10、25 或 40 米)、4 种波段组合(对应于场景极化)和 3 种仪器模式之一。在镶嵌上下文中使用集合可能需要过滤到一组同质的波段和参数。有关集合使用和预处理的详细信息,请参阅本文。每个场景包含 4 个可能的极化波段中的 1 个或 2 个,具体取决于仪器的极化设置。可能的组合是单频段 VV 或 HH,以及双频段 VV+VH 和 HH+HV:

VV:单共极化,垂直发射/垂直接收

HH:单共极化,水平发射/水平接收

VV + VH:双频交叉极化,垂直发射/水平接收

HH + HV:双频交叉极化,水平发射/垂直接收

每个场景还包括一个附加的“角度”带,其中包含从椭球每个点的近似入射角(以度为单位)。该波段是通过插入每个资产提供的“geolocationGridPoint”网格字段的“incidenceAngle”属性来生成的。

每个场景都使用 Sentinel-1 Toolbox 进行预处理,步骤如下:

热噪声去除

辐射校准

使用 SRTM 30 或 ASTER DEM 对纬度大于 60 度的区域进行地形校正,其中 SRTM 不可用。最终的地形校正值通过对数缩放 (10*log10(x)) 转换为分贝。

有关这些预处理步骤的更多信息,请参阅 Sentinel-1 预处理文章。有关使用 Sentinel-1 影像的进一步建议,请参阅 Guido Lemoine 的 SAR 基础教程和 Mort Canty 的 SAR 变化检测教程。

该集合是即时计算的。如果要使用具有原始功率值(更新速度更快)的基础集合,请参阅 COPERNICUS/S1_GRD_FLOAT。

Dataset Availability

2014-10-03T00:00:00 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S1_GRD")

Bands Table

Name Description Min* Max* Resolution Units
HH Single co-polarization, horizontal transmit/horizontal receive -50 1 10 meters
HV Dual-band cross-polarization, horizontal transmit/vertical receive -50 1 10 meters
VV Single co-polarization, vertical transmit/vertical receive -50 1 10 meters
VH Dual-band cross-polarization, vertical transmit/horizontal receive -50 1 10 meters
angle Approximate incidence angle from ellipsoid 0 90 -1 meters Degrees

* = Values are estimated


影像属性:

Name Type Description
GRD_Post_Processing_facility_country String Name of the country where the facility is located. This element is configurable within the IPF.
GRD_Post_Processing_facility_name String Name of the facility where the processing step was performed. This element is configurable within the IPF.
GRD_Post_Processing_facility_organisation String Name of the organisation responsible for the facility. This element is configurable within the IPF.
GRD_Post_Processing_facility_site String Geographical location of the facility. This element is configurable within the IPF.
GRD_Post_Processing_software_name String Name of the software.
GRD_Post_Processing_software_version String Software version identification.
GRD_Post_Processing_start Double Processing start time.
GRD_Post_Processing_stop Double Processing stop time.
SLC_Processing_facility_country String Name of the country where the facility is located. This element is configurable within the IPF.
SLC_Processing_facility_name String Name of the facility where the processing step was performed. This element is configurable within the IPF.
SLC_Processing_facility_organisation String Name of the organisation responsible for the facility. This element is configurable within the IPF.
SLC_Processing_facility_site String Geographical location of the facility. This element is configurable within the IPF.
SLC_Processing_software_name String Name of the software.
SLC_Processing_software_version String Software version identification.
SLC_Processing_start Double Processing start time.
SLC_Processing_stop Double Processing stop time.
S1TBX_Calibration_Operator_version String Sentinel-1 Toolbox calibration tool version.
S1TBX_SAR_Processing_version String Sentinel-1 Toolbox SAR processing tool version.
SNAP_Graph_Processing_Framework_GPF_version String Sentinel Application Platform (SNAP) version.
startTimeANX Double Sensing start time of the input data relative to the ascending node crossing. This is a count of the time elapsed since the orbit ascending node crossing [ms].
stopTimeANX Double Sensing stop time of the input data relative to the ascending node crossing. This is a count of the time elapsed since the orbit ascending node crossing [ms].
nssdcIdentifier String Uniquely identifies the mission according to standards defined by the World Data Center for Satellite Information (WDC-SI), available [here](https://nssdc.gsfc.nasa.gov/nmc/SpacecraftQuery.jsp).
familyName String The full mission name. E.g. “SENTINEL-1”
platform_number String The alphanumeric identifier of the platform within the mission.
instrument String Information related to the instrument on the platform to which acquired the data.
instrumentMode String IW ([Interferometric Wide Swath](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath)), EW ([Extra Wide Swath](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/extra-wide-swath)) or SM ([Strip Map](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/stripmap))
instrumentSwath String List of the swaths contained within a product. Most products will contain only one swath, except for TOPS SLC products which include 3 or 5 swaths.
orbitNumber_start Double Absolute orbit number of the oldest line within the image data.
orbitNumber_stop Double Absolute orbit number of the most recent line within the image data.
relativeOrbitNumber_start Double Relative orbit number of the oldest line within the image data.
relativeOrbitNumber_stop Double Relative orbit number of the most recent line within the image data.
cycleNumber Double Absolute sequence number of the mission cycle to which the oldest image data applies.
phaseIdentifier Double Id of the mission phase to which the oldest image data applies.
orbitProperties_pass String Direction of the orbit ('ASCENDING' or 'DESCENDING') for the oldest image data in the product (the start of the product).
orbitProperties_ascendingNodeTime Double UTC time of the ascending node of the orbit. This element is present for all products except ASAR L2 OCN products which are generated from an ASAR L1 input.
resolution String H for high or M for medium.
resolution_meters Double Resolution in meters.
instrumentConfigurationID Double The instrument configuration ID (Radar database ID) for this data.
missionDataTakeID Double Unique ID of the datatake within the mission.
transmitterReceiverPolarisation Double Transmit/Receive polarisation for the data. There is one element for each Tx/Rx combination: ['VV'], ['HH'], ['VV', 'VH'], or ['HH', 'HV'].
productClass String Output product class “A” for Annotation or “S” for Standard.
productClassDescription String Textual description of the output product class.
productComposition String The composition type of this product: “Individual”, “Slice” or “Assembled”.
productType String The product type (correction level) of this product.
productTimelinessCategory String Describes the required timeliness of the processing. One of: NRT-10m, NRT-1h, NRT-3h, Fast-24h, Off-line, or Reprocessing
sliceProductFlag String True if this is a slice from a larger product or false if this is a complete product.
segmentStartTime Double Sensing start time of the segment to which this slice belongs. This field is only present if sliceProductFlag = true.
sliceNumber Double Absolute slice number of this slice starting at 1. This field is only present if sliceProductFlag = true.
totalSlices Double Total number of slices in the complete data take. This field is only present if sliceProductFlag = true.


代码:

var imgVV = ee.ImageCollection('COPERNICUS/S1_GRD')
        .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
        .filter(ee.Filter.eq('instrumentMode', 'IW'))
        .select('VV')
        .map(function(image) {
          var edge = image.lt(-30.0);
          var maskedImage = image.mask().and(edge.not());
          return image.updateMask(maskedImage);
        });
var desc = imgVV.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));
var asc = imgVV.filter(ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var spring = ee.Filter.date('2015-03-01', '2015-04-20');
var lateSpring = ee.Filter.date('2015-04-21', '2015-06-10');
var summer = ee.Filter.date('2015-06-11', '2015-08-31');
var descChange = ee.Image.cat(
        desc.filter(spring).mean(),
        desc.filter(lateSpring).mean(),
        desc.filter(summer).mean());
var ascChange = ee.Image.cat(
        asc.filter(spring).mean(),
        asc.filter(lateSpring).mean(),
        asc.filter(summer).mean());
Map.setCenter(5.2013, 47.3277, 12);
Map.addLayer(ascChange, {min: -25, max: 5}, 'Multi-T Mean ASC', true);
Map.addLayer(descChange, {min: -25, max: 5}, 'Multi-T Mean DESC', true);


影像



相关文章
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2825 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
270 0
|
8月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
731 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
8月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
115 0
|
8月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
175 0
|
8月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
94 0
|
8月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
329 0
|
8月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
156 0
|
8月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
150 0
|
8月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
264 0

热门文章

最新文章

推荐镜像

更多