基于branch and bound插入的large neighborhood search

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 基于branch and bound插入的large neighborhood search

一、前

今年开年那会还在做一个课题的实验,那时候想用large neighborhood search来做一个问题,但是后来发现常规的一些repair、destroy算子效果并不是很好。后来才知道,large neighborhood search以及它的衍生算法,这类框架给人一种非常通用的感觉,就是无论啥问题都能往里面套。

640.png

往往的结果是套进去效果也是一般。这也是很多刚入行的小伙伴经常喜欢干的事吧,各种算法框架套一个问题,发现结果不好了就感觉换下一个。最后复现了N多个算法发现依然no process,这时候就会怀疑人生了。其实要想取得好的performance,肯定还是要推导一些问题特性,设计相应的算子也好,邻域结构也好。

好了,回到正题。当时我试了好几个large neighborhood search算子,发现没啥效果的时候,心里难受得很。那几天晚上基本上是转辗反侧,难以入眠,当然了是在思考问题。然后一个idea突然浮现在我的脑瓜子里,常规的repair算子难以在问题中取得好的performance,是因为约束太多了,插入的时候很容易违背约束。

640.gif

在不违背约束的条件下又难以提升解的质量,我就想能不能插入的啥时候采取branch and bound。遍历所有的可能插入方式,然后记录过程中的一个upper bound用来删掉一些分支。

感觉是有搞头的,后来想想,这个branch的方法以及bound的方法似乎是有点难设计。然后又搁置了几天,最后没进展的时候突然找了一篇论文,是好多年前的一篇文章了。里面详细讲解了large neighborhood search中如何利用branch and bound进行插入,后来实现了以下感觉还可以。感觉这个方法还是有一定的参考价值的,因此今天就来写写(其实当时就想写了,只不过一直拖到了现在。。。)

二、large neighborhood search

关于这个算法,我在此前的推文中已经有过相应的介绍,详情小伙伴们可以戳这篇的链接进行查看:

自适应大邻域搜索(Adaptive Large Neighborhood Search)入门到精通超详细解析-概念篇

我把其中的一段话摘出来:

大多数邻域搜索算法都明确定义它们的邻域。在LNS中,邻域是由和方法隐式定义的。方法会破坏当前解的一部分,而后方法会对被破坏的解进行重建。方法通常包含随机性的元素,以便在每次调用方法时破坏解的不同部分。

那么,解的邻域就可以定义为:首先通过利用方法破坏解,然后利用方法重建解,从而得到的一系列解的集合。LNS算法框架如下:

640.png

有关该算法更详细的介绍可以参考Handbook Of Metaheuristics这本书2019版本中的Chapter 4 Large Neighborhood Search(David Pisinger and Stefan Ropke),文末我会放出下载的链接。

关于destroy算子呢,有很多种,比如随机移除几个点,贪心移除一些比较差的点,或者基于后悔值排序移除一些点等,这里我给出文献中的一种移除方式,Shaw (1998)提出的基于进行移除:

640.png

假设需要从解中所有的移除个,它首先随机选择一个放进(已经移除的列表)(第1行),然后迭代地(3–6行)移除剩下的个。每次这样的迭代都会先从中随机选择一个,并根据相关标准对其余未移除的进行排序(第3-4行)。在第5行中计算要插入的新的下标,然后插入到中(第6行),直到迭代结束。关联度的定义如Shaw(1998)所述:

其中,customer 和 在不同的路径中时,否则为0。

三、branch and bound

上面讲了Large Neighborhood Search以及介绍了一个方法,下面就是重头戏,如何利用branch and bound进行插入了。

3.1 branch

其实插入的分支方式还是挺好设计的,这玩意儿呢我将也比较难讲清楚,我就画图好了,还是基于VRP问题示例,其他问题类似,假如我们现在有这样一个解:

640.png

为了演示我就不画太多点太多路径了,免得大家看得心累。

红色箭头就是能够插入的位置。现在,假如我们插入(由于branch and bound是需要遍历所有可能的插入组合,因此先插入哪个后插入哪个都是可以的,但是分支定界的速度可能会受到很大的影响,这个咱们暂时不讨论):

640.png

为了让大家看得更加清楚,我把的位置用粉红色给标记出来了,一共有3条分支,有个候选的位置就有多少条分支。

现在,还剩下,插入的时候,我们需要继续进行分支:

image.gif640.png

55~画分支树真是画死我啦(大家一定要给个赞,点个在看呀~),可以看到,最后每条路径就是一个完成的解。在两个点的插入两个点最后分支完成的居然有12个!!!大家可以自行脑补下,在90个点的中插入10个点最终形成的分支会有多少。毫无疑问会很多很多,多到你无法想象。下面是DFS搜索分支树的过程:

image.gif640.png

如果要插入的客户组为空,则可以认为所有客户已经插入到solution中,形成了一个,因此判断找到的一个upper bound是否比最优的upper bound还要好,是的话就对upper bound进行更新。否则,它会选择插入效果最好的客户,这会使目标函数下降得最大(Shaw 1998中也使用了这种启发式方法)。然后,对所有插入客户后形成的分支按照lower bound进行排序,从lower bound低的分支开始继续往下分支(可以算是一种加速的策略)。同样,请注意,该算法仅探索其lower bound比upper bound更好的分支。

3.2 bound

开始之前大家想想bound的难点在哪里呢?首先想想bound中最重要的两个界:upper bound和lower bound:

  • lower bound是指搜索过程中一个partial solution(比如上图插入后形成的3个)的目标值,因为并不能算完整的一个解,继续往下的时候只可能增加(最小化问题)或者减少(最大化问题),因此它的意思是说当前支路的最终形成解的目标值下界(最终目标值不可能比这个lower bound更好)。
  • upper bound是指搜索过程中找到的一个feasible solution(比如上图插入后形成的12个中满足所有约束的就是)的目标值,如果存在某支路的lower bound比upper bound还要差,那么该支路显然是没有继续往下的必要了,可以剪去。

显然可以使用LNS在destroy之前的解的目标值作为upper bound,因为我们总是期望找到比当前解更好的解,才会去进行destroy和repair。现在的问题是如何对一个的lower bound应该怎样计算。下面讲讲几种思路:

(1) 文献中给出的思路,利用最小生成树:

image.gifimage.gif640.png640.png

这个方案我试了,但是找到的lower bound实在是太低了,这个lower bound只考虑了距离因素,但问题中往往还存在时间窗等约束。因此这个方法在我当时做的问题中只能说聊胜于无。

(2) 按照greedy的方法将所有未插入的Customer插入到他们最好的位置上,形成一个,然后该的目标值作为lower bound。

但是这个lower bound是有缺陷的,因为很难保证不会错过某些比较有潜力的分支。

(3) 直接利用当前的的目标值作为lower bound,也比较合理。但是该值往往太低了,这可能会导致要遍历更多的分支,消耗更多时间。

以上就是一些思路,至于有没有更好的bound方法,我后面也没有往下深究了。当时实现出来以后效果是有的,就是时间太长了,然后也放弃了。

当然这篇paper后面也给了一个利用LDS进行搜索以加快算法的速度,这里就不展开了,有空再说。感兴趣的小伙伴可以去看看原paper,我会放到留言区的。

四、代码环节

代码实现放两个,一个是我当时写的一个DFSEXPLORER,采用的是思路2作为bound的,(代码仅仅提供思路)如下:

private void DFSEXPLORER5(LNSSolution node, LNSSolution upperBound, int dep) {
  Queue<LNSSolution> queue = new LinkedList<LNSSolution>();
  LNSSolution s_c_ = node;
        queue.add(s_c_);
        int es = 1;
        while (!queue.isEmpty()) {
         s_c_ = queue.remove();
            //v是一个完整的解
         if(s_c_.removalCustomers.isEmpty()) {
       if(s_c_.cost < upperBound.cost && Math.abs(s_c_.cost-upperBound.cost)>0.001) {
        //System.out.println("new found > "+s_c_.cost+" feasible = "+s_c_.feasible());
        upperBound.cost = s_c_.cost;
        upperBound.routes = s_c_.routes;
       }
      }else {
       //System.out.println("l > "+s_c_.removalCustomers.size() + " cost = "+s_c_.cost);
       double minIDelta = Double.POSITIVE_INFINITY;
       int minIndex = -1;
       Customer c=null;
       for(int i = 0; i < s_c_.removalCustomers.size(); ++i) {
        Customer cu = s_c_.removalCustomers.get(i);
        double d1 = s_c_.minInsertionDeltas[cu.getCustomerNo()];
        if(minIDelta > d1) {
         minIDelta = d1;
         c = cu;
         minIndex = i;
        }
       }
       ArrayList<LNSSolution> neighborI_c = new ArrayList<LNSSolution>();
       for( int i = 0; i < s_c_.routes.length; ++i) {
        Route route = s_c_.routes[i];
           if(!MyUtil.checkCompatibility(c, route.getAssignedVehicle())) {
            continue;
           }
              for (int j = 0; j <= route.getCustomersLength(); j++) {
               LNSSolution s_i = s_c_.solClones();
               s_i.insertCustomer(s_i.routes[i], s_i.removalCustomers.get(minIndex), j, minIndex);
               //updateIDAfterOneInserted(s_i, s_i.routes[i]);
               //s_i.calcLowerBound();
               double o_c = s_i.lb;
               updateInsertionDelta(s_i);
         double n_c = s_i.lb;
         //if(o_c != n_c)System.out.println("o = "+o_c+" n = "+n_c);
               neighborI_c.add(s_i);
              }
          }
       Collections.sort(neighborI_c);
       for(LNSSolution s:neighborI_c) {
        //System.out.println("lBound "+s.lb+" upperBound = "+upperBound.cost);
        //updateInsertionDelta(s);
     //s.calcLowerBound();
        if(s.lb < upperBound.cost /*&& dep > 0*/) {
         //System.out.println("lBound "+s.lb+" upperBound = "+upperBound.cost);
         //System.out.println(s.removalCustomers.size());
         queue.add(s);
         es++;
         dep--;
        }
       } 
      }
        }
        //System.out.println(es);
    }

第二个是GitHub上找到的一个人复现的,我已经fork到我的仓库中了:

https://github.com/dengfaheng/vrp

这个思路bound的思路呢没有按照paper中的,应该还是用的贪心进行bound。看起来在R和RC系列的算例中效果其实也一般般,因为用了LDS吧可能。下面是运行的c1_2_1的截图:640.png


导入idea或者eclipse后等他安装完依赖,运行下面的文件即可,更改算例的位置如图所示:640.png


这个思路是直到借鉴的,大家在用LNS的时候也可以想想有什么更好的bound方法。

好了,这就是今天的分享了。可能有很多地方没写的很明白,因为涉及的点太多了我也只能讲个大概提供一个思路而已。大家来了就帮我点个在看再走吧~

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6月前
|
人工智能 NoSQL atlas
|
6月前
|
机器学习/深度学习 人工智能
【CatBoost报错解决】CatBoostError: Bad value for num feature[non default doc idx=0,feature idx=19]=
【CatBoost报错解决】CatBoostError: Bad value for num feature[non default doc idx=0,feature idx=19]=
LeetCode 222. Count Complete Tree Nodes
给出一个完全二叉树,求出该树的节点个数。
86 0
LeetCode 222. Count Complete Tree Nodes
|
机器学习/深度学习 算法
Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne
PAT (Advanced Level) Practice - 1119 Pre- and Post-order Traversals(30 分)
PAT (Advanced Level) Practice - 1119 Pre- and Post-order Traversals(30 分)
122 0
PAT (Advanced Level) Practice - 1119 Pre- and Post-order Traversals(30 分)
PAT (Advanced Level) Practice - 1043 Is It a Binary Search Tree(25 分)
PAT (Advanced Level) Practice - 1043 Is It a Binary Search Tree(25 分)
123 0
|
机器学习/深度学习
Leetcode-Medium 96.Unique Binary Search Trees
Leetcode-Medium 96.Unique Binary Search Trees
97 0
PAT (Advanced Level) Practice - 1068 Find More Coins(30 分)
PAT (Advanced Level) Practice - 1068 Find More Coins(30 分)
112 0
|
存储
PAT (Advanced Level) Practice - 1051 Pop Sequence(25 分)
PAT (Advanced Level) Practice - 1051 Pop Sequence(25 分)
100 0