干货|蚁群算法求解带时间窗的车辆路径规划问题详解(附Java代码)

简介: 干货|蚁群算法求解带时间窗的车辆路径规划问题详解(附Java代码)

学 习 警 告

一眨眼春节又过去了,相信很多同学也和小编一样,度过了一段时间相对轻松的时光。

当然,玩耍过后也不能忘记学习。本着~造福人类~的心态,小编又开始干活,为大家带来 有 · 趣 的干货算法内容了!

微信图片_20220423093734.jpg


本期为大家带来的内容是蚁群算法,解决大家熟悉的带时间窗的车辆路径规划问题。关于蚁群算法,公众号内已经有相关内容介绍TSP:

干货 | 十分钟快速搞懂什么是蚁群算法(Ant Colony Algorithm, ACA)(附代码)

本文主要分为以下部分:

蚁群算法简介

蚁群算法与VRPTW

代码测试

笔记总结



01


蚁群算法简介

蚁群系统(Ant System或Ant Colony System)一种群体仿生类算法,灵感来源于在蚂蚁觅食的过程。学者们发现,单个蚂蚁的行为比较简单,但是蚁群整体却可以体现一些智能的行为,例如可以在不同的环境下找到到达食物源的最短路径

经进一步研究发现,蚂蚁会在其经过的路径上释放一种可以称之为“信息素”(phenomenon)的物质,蚁群内的蚂蚁对信息素具有感知能力,它们会沿着信息素浓度较高路径行走,而每只路过的蚂蚁都会在路上留下信息素。这样经过一段时间后,整个蚁群就会沿着最短路径到达食物源了。

微信图片_20220423093737.png

蚁群算法通过模仿蚂蚁“每次在经过的较短路径上留下信息素”的行为,通过信息素记录下较优结果,不断逼近最优解。


02


蚁群算法与VRPTW

VRPTW在之前的推文里已经提到过多次了,这里不再详细介绍。感兴趣的朋友可以看过去的推文:

禁忌搜索算法求解带时间窗的车辆路径规划问题详解(附Java代码)

通过上面的介绍,大家不难想到,蚁群算法的关键在于信息素的利用。在蚁群寻找食物时,每次都由一只蚂蚁从头开始寻找(不同于禁忌搜索或遗传算法的邻域动作);每次寻找的不同点在于信息素的改变:不断靠近信息素较浓的路径


用蚁群算法解决VRPTW的过程主要分为以下几步:


1.初始化蚂蚁信息(以下用agents表示);

2.为每位agents构造完整路径;

3.更新信息素;

4.迭代,保存最优解。

 

算法的关键在第二步:构造解时该如何查找下一个服务的客户。

我们用以下公式计算客户j被服务的概率:




微信图片_20220423093741.jpg微信图片_20220423093744.jpg微信图片_20220423093747.jpg微信图片_20220423093749.jpg




03


代码测试

这次代码是由小编亲自编写的,由于是第一次编写ACS的VRPTW代码,有不周之处还请多包涵。


因为小编太懒了,具体代码就不在此展示了,有兴趣的朋友可以在公众号内输入【ACSVRP】不带【】即可下载对应Java代码。




这里展示一下代码的运行情况。对Solomon Benchmark C101算例的测试效果如下:


25点(迭代次数1000,算例最优解191.3):

微信图片_20220423093947.jpg

50点(迭代次数1000,算例最优解362.4):

微信图片_20220423093951.jpg

100点(迭代次数1000,算例最优解827.3):

微信图片_20220423093953.jpg

从测试数据来看,结果似乎不是很好。。。不过,VRPTW仅是一个载体,目的是为了深入了解蚁群算法的运行机制。
小编在测试时发现,参数设置地不同对结果还是有一定影响的。算法偶尔会跑出单个点构成的路径,小编认为应该加大时间窗对应参数w_2,效果有一些提升。推荐的参数已经默认设置在代码中。

同时,蚁群算法也有其他仿生类算法的特点,比较容易早熟。这点在测试100点数据是尤为明显,全局最优解可能与前100次迭代的最优解相同。




04


笔记总结

大致了解了蚁群算法对VRPTW的求解过程后,我的第一感觉是,和禁忌搜索的思路其实很像:两者都是利用过去搜索的“记忆”指导下一步走向。禁忌禁止一些方向,信息素引导一些方向。但两者又有很大区别:禁忌搜索作为邻域搜索类算法,每次都在旧解里变换出新解;蚁群算法却需要重新派出蚂蚁走完全程。对比之下,每次迭代时蚁群算法可能需要跟更多花费时间。从测试结果来看,蚁群算法确实没有禁忌搜索高效。当然,这可能和小编个人编写代码的能力有关。


但不可否认的是,大自然的智慧确实不同寻常,在每一个领域都闪耀着光辉,如此美妙绝伦。


微信图片_20220423093956.jpg

(小小的蚂蚁,也蕴藏着让人意想不到的智慧呢!)


相关文章
|
10天前
|
XML 安全 Java
Java反射机制:解锁代码的无限可能
Java 反射(Reflection)是Java 的特征之一,它允许程序在运行时动态地访问和操作类的信息,包括类的属性、方法和构造函数。 反射机制能够使程序具备更大的灵活性和扩展性
19 5
Java反射机制:解锁代码的无限可能
|
6天前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
30 3
|
11天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
40 10
|
7天前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
5天前
|
Java
Java代码解释++i和i++的五个主要区别
本文介绍了前缀递增(++i)和后缀递增(i++)的区别。两者在独立语句中无差异,但在赋值表达式中,i++ 返回原值,++i 返回新值;在复杂表达式中计算顺序不同;在循环中虽结果相同但使用方式有别。最后通过 `Counter` 类模拟了两者的内部实现原理。
Java代码解释++i和i++的五个主要区别
|
13天前
|
搜索推荐 Java 数据库连接
Java|在 IDEA 里自动生成 MyBatis 模板代码
基于 MyBatis 开发的项目,新增数据库表以后,总是需要编写对应的 Entity、Mapper 和 Service 等等 Class 的代码,这些都是重复的工作,我们可以想一些办法来自动生成这些代码。
25 6
|
13天前
|
Java
通过Java代码解释成员变量(实例变量)和局部变量的区别
本文通过一个Java示例,详细解释了成员变量(实例变量)和局部变量的区别。成员变量属于类的一部分,每个对象有独立的副本;局部变量则在方法或代码块内部声明,作用范围仅限于此。示例代码展示了如何在类中声明和使用这两种变量。
|
14天前
|
存储 Java API
优雅地使用Java Map,通过掌握其高级特性和技巧,让代码更简洁。
【10月更文挑战第19天】本文介绍了如何优雅地使用Java Map,通过掌握其高级特性和技巧,让代码更简洁。内容包括Map的初始化、使用Stream API处理Map、利用merge方法、使用ComputeIfAbsent和ComputeIfPresent,以及Map的默认方法。这些技巧不仅提高了代码的可读性和维护性,还提升了开发效率。
36 3
|
14天前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
24 1
|
16天前
|
Java
Java代码解释静态代理和动态代理的区别
### 静态代理与动态代理简介 **静态代理**:代理类在编译时已确定,目标对象和代理对象都实现同一接口。代理类包含对目标对象的引用,并在调用方法时添加额外操作。 **动态代理**:利用Java反射机制在运行时生成代理类,更加灵活。通过`Proxy`类和`InvocationHandler`接口实现,无需提前知道接口的具体实现细节。 示例代码展示了两种代理方式的实现,静态代理需要手动创建代理对象,而动态代理通过反射机制自动创建。