为什么MySQL分库分表后总存储大小变大了?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 为什么MySQL分库分表后总存储大小变大了?

1.背景


在完成一个分表项目后,发现分表的数据迁移后,新库所需的存储容量远大于原本两张表的大小。在做了一番查询了解后,完成了优化。

回过头来,需要进一步了解下为什么会出现这样的情况。

与标题的问题的类似问题还有,为什么表数据内容删除了而表大小没有变化。其本质都是一样的。

要回答这些问题,我们需要从mysql的索引模型谈起。


微信图片_20220421103446.jpg

只是作为封面图:)


2.InnoDB 的索引模型


在 MySQL 中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。


而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。由于 InnoDB 存储引擎在 MySQL 数据库中使用最为广泛,所以接下来就以 InnoDB 为例,分析其中的索引模型。


在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。而InnoDB中,使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的,每一个索引会对应一颗B+树。


假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引,建表语句如下

CREATE TABLE `t` (

`id` int(11) NOT NULL,

`k` int(11) NOT NULL,

`name` varchar(16) DEFAULT NULL,

PRIMARY KEY (`id`),

KEY `k` (`k`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

2.jpg



表中 R1~R5 的 (ID,k) 值分别为 (10,1)、(20,2)、(30,3)、(50,5) 和 (70,7),索引id和索引k的B+树的示例示意图如下。


根据叶子节点的内容,索引类型分为主键索引和非主键索引,主键索引的叶子节点存的是整行数据R1~R5,非主键索引的叶子节点内容是主键的值。


从图中可以看出,基于非主键索引的查询需要多扫描一棵索引树才能找到对应的数据。提一句题外话,我们在应用中应该尽量使用主键查询


3.索引维护


B+ 树为了维护索引有序性,在增删改数据的时候需要做必要的维护。


假设,我们要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。


如果删掉了一个数据页上的所有记录,那么整个数据页就能被复用了。进一步地,如果我们用 delete 命令把整个表的数据删除呢?结果就是,这个表相关的所有的数据页都会被标记为可复用。


但是,无论如何,磁盘文件的大小并不会缩小。


这些被标记为可复用,而并没有实际被使用的空间,就是一些“存储空洞”。

3.jpg


实际上,不止是删除数据会造成空洞,插入数据也会。


以上图为例,如果插入新的行 ID 值为 80,则只需要在 R5 的记录后面插入一个新记录。


如果新插入的 ID 值为 60,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。


而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。


除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,插入一条记录竟然使得整体空间利用率降低大约 50%。


可以看到,由于 page 2 满了,再插入一个 ID 是 60 的数据时,就不得不再申请一个新的页面 page 3 来保存数据了。


页分裂完成后,page 2 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。


另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。


因此,大量的增删改之后的表,都是可能存在很大的“数据空洞”的。


因此,我们就能解释,为什么分表后的总存储变大了。


因为分表后,需要从老库全量同步数据到新库,数据同步平台开启多个线程进行同步,插入各个分表并不是按照递增的顺序插入的,因此,会产生巨量的“数据空洞”,造成存储空间变大。


如果能够把这些空洞去掉,就能达到收缩表空间的目的。而重建表就能达到这样的目的。


4.重建表


如果我们手动重建一张表,可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地(就是递增地)从表 A 里读出来再插入到表 B 中。由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。显然地,表 B 的主键索引更紧凑,数据页的利用率也更高。如果我们把表 B 作为临时表,数据从表 A 导入表 B 的操作完成后,用表 B 替换 A,从效果上看,就起到了收缩表 A 空间的作用。


这里,你可以使用 alter table A engine=InnoDB 命令来重建表。在 MySQL 5.5 版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表 B 不需要你自己创建,MySQL 会自动完成转存数据、交换表名、删除旧表的操作。显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。因此,在整个 DDL 过程中,表 A 中不能有更新。也就是说,这个 DDL 不是 Online 的。


MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。

  • 建立一个临时文件,扫描表 A 主键的所有数据页;
  • 用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;
  • 生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中;
  • 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件;(应用row log的过程可能又回有页分裂)
  • 用临时文件替换表 A 的数据文件。


可以看到,在这个过程中,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表 A 做增删改操作。这也就是 Online DDL 名字的来源。


需要补充说明的是,上述的这些重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗 IO 和 CPU 资源的。因此,如果是线上服务,你要很小心地控制操作时间。


optimize table、analyze table 和 alter table 这三种方式重建表的区别:

  • 从 MySQL 5.6 版本开始,alter table t engine = InnoDB(也就是 recreate)默认的就是上面online DDL 的流程了;
  • analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了 MDL 读锁;
  • optimize table t 等于 recreate+analyze。


参考文献:

《MySQL实战45讲》

《MySQL技术内幕》

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4月前
|
存储 关系型数据库 MySQL
Linux 安装 mysql 及配置存储位置
Linux 安装 mysql 及配置存储位置
150 3
|
3月前
|
存储 关系型数据库 MySQL
MySQL——数据库备份上传到阿里云OSS存储
MySQL——数据库备份上传到阿里云OSS存储
162 0
|
3月前
|
存储 关系型数据库 MySQL
mysql 使用变量存储中间结果的写法
mysql 使用变量存储中间结果的写法
|
3月前
|
存储 算法 关系型数据库
(二十二)全解MySQL之分库分表后带来的“副作用”一站式解决方案!
上篇《分库分表的正确姿势》中已经将分库分表的方法论全面阐述清楚了,总体看下来用一个字形容,那就是爽!尤其是分库分表技术能够让数据存储层真正成为三高架构,但前面爽是爽了,接着一起来看看分库分表后产生一系列的后患问题,注意我这里的用词,是一系列而不是几个,也就是分库分表虽然好,但你要解决的问题是海量的。
331 3
|
24天前
|
存储 关系型数据库 MySQL
PACS系统 中 dicom 文件在mysql 8.0 数据库中的 存储和读取(pydicom 库使用)
PACS系统 中 dicom 文件在mysql 8.0 数据库中的 存储和读取(pydicom 库使用)
20 2
|
2月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
344 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
1月前
|
存储 SQL 关系型数据库
MySQL 存储函数及调用
MySQL 存储函数及调用
35 3
|
1月前
|
存储 关系型数据库 MySQL
MySQL 如何存储地理信息
MySQL 如何存储地理信息
78 1
|
2月前
|
存储 关系型数据库 MySQL
深入解析MySQL数据存储机制:从表结构到物理存储
深入解析MySQL数据存储机制:从表结构到物理存储
111 1
|
24天前
|
存储 关系型数据库 MySQL
Key_Value 形式 存储_5级省市城乡划分代码 (mysql 8.0 实例)
本文介绍了如何使用MySQL8.0数据库中的Key_Value形式存储全国统计用区划代码和城乡划分代码(5级),包括导入数据、通过数学函数提取省市区信息,以及查询5级行政区划的详细数据。
27 0
下一篇
无影云桌面