【Java数据结构】堆到底是什么东西?一文帮你理解——优先级队列(堆)

简介: 笔记

🎄1.二叉树的顺序储存


🛸二叉树的顺序储存

使用数组保存二叉树结构,方式即将二叉树用层序遍历方式放入数组中,数组的下标位置与二叉树节点位置是一 一对应的。

1.png


一般只适合表示完全二叉树,因为非完全二叉树会有空间的浪费。


这种方式的主要用法就是堆的表示。

2.png



🛸下标关系

已知双亲(parent)的下标,则:

左孩子(left)下标 = 2 * parent + 1;

右孩子(right)下标 = 2 * parent + 2;

已知孩子(不区分左右)(child)下标,则:

双亲(parent)下标 = (child - 1) / 2;

3.png


🎄2.堆


🛸概念

堆 逻辑上是一棵完全二叉树

堆 物理上是保存在数组中

满足任意结点的值都大于其子树中结点的值,叫做大堆,或者大根堆,或者最大堆

反之,则是小堆,或者小根堆,或者最小堆

堆的基本作用是,快速找集合中的最值

4.png


🛸操作——向下调整(以大根堆为例,小根堆就是换个符号的事)

前提:

左右子树必须已经是一个堆,才能调整。


说明:


elem 代表存储堆的数组

length 代表数组中被视为堆数据的个数(即数组有效元素个数)

parent 代表要调整子树根节点位置的下标

child 代表最小值孩子下标(如果左右都有孩子,先比较,然后使child代表最小值孩子下标)

向下调整的过程:


parent 如果已经是叶子结点,则整个调整过程结束

判断 parent 位置有没有孩子

因为堆是完全二叉树,没有左孩子就一定没有右孩子,所以先判断是否有左孩子

因为堆的存储结构是数组,所以判断是否有左孩子,即判断左孩子下标是否越界,即 若(parent×2+1) >= size 越界,再判断是否有右孩子,即若(parent×2+2) >= size 越界

确定最小孩子,比较孩子节点值,child最后储存的一定是最小孩子的下标

① 如果右孩子不存在,则 child = parent×2+1

② 否则,比较 elem[parent×2+1] 和 elem[parent×2+2] 值的大小,child储存值小的孩子的下标

比较 elem[parent] 的值 和 elem[child] 的值,如果elem[parent] <= elem[child],则满足堆的性质,调整结束

否则,交换 elem[parent] 和 elem[child]的值

然后更新 parent 和 child 下标,即parent = child; child = 2 * parent + 1;向下重复以上过程

5.png


实现代码:

//向下调整
    public void adjustDown(int parent,int length){
        int child = parent*2+1;//先找到左孩子节点
        while(child<length) {//当child>=length的时候说明当前子树已经调整好了
            //先根据左孩子节点判断右孩子节点是否存在,且是否大于左孩子节点
            if (child + 1 < length && elem[child + 1] > elem[child]) {//如果存在,且值大于左孩子节点
                child++;
            }
            //保证,child下标的数据  一定是左右孩子的最大值的下标
            if (elem[child] > elem[parent]) {//如果孩子节点最大值,大于父节点,则要交换位置,因为要建大根堆
                int tmp = elem[child];
                elem[child] = elem[parent];
                elem[parent] = tmp;
                //继续向下看是否符合大根堆的条件
                parent = child;//更新parent下标
                child = 2 * parent + 1;//更新child下标
            }else{//否则不用换位置
                break;
            }
        }
    }

🛸操作——建堆


下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。

根节点左右子树不是堆,我们怎么调整呢?这就用到上边说的向下调整


借助向下调整,就可以把一个数组构建成堆。

从倒数第一个非叶子节点开始,从后往前遍历数组,针对每个位置,依次向下调整即可。

7.png8.png


调整前

int[] array = { 1,2,3,4,5,6,7,8,9,10 };

调整后

int[] array = { 10,9,7,8,5,6,3,1,4,2 };

实现代码:

//建大堆
    public void createHeap(int array[]){
        //将传入的数组值存入堆的数组中
        for (int i = 0; i < array.length; i++) {
            this.elem[i] = array[i];
            this.usedSize++;
        }
        //从下往上建堆,parent 就代表每颗子树的根节点
        for (int parent=(array.length-1-1)/2 ; parent>=0 ; parent--){
            //对每个子树进行向下调整
            //第二个参数传入有效元素个数是因为
            //每次调整的结束位置应该是:this.usedSize.
            adjustDown(parent,this.usedSize);
        }
    }


🎄3.堆的应用——优先级队列


🛸概念

在很多应用中,我们通常需要按照优先级情况对待处理对象进行处理,比如首先处理优先级最高的对象,然后处理次高的对象。最简单的一个例子就是,在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话。

在这种情况下,我们的数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)


🛸内部原理

优先级队列的实现方式有很多,但最常见的是使用堆来构建。


🛸操作——入队列

过程(以大堆为例):

  1. 首先按尾插方式放入数组
  2. 比较其和其双亲的值的大小,如果双亲的值大,则满足堆的性质,插入结束
  3. 否则,交换其和双亲位置的值,重新进行 2、3 步骤(向上调整
  4. 直到根结点

图示:

9.png


代码实现:

//入堆操作
    public void offer(int value){
        //先判断满没满
        if(isFull()){//满了要扩容
            this.elem = Arrays.copyOf(this.elem,2*this.elem.length);
        }
        elem[usedSize] = value;//尾插到数组里
        usedSize++;//有效值加1
        adjustUp(usedSize-1);//向上调整
    }
    //向上调整
    public void adjustUp(int child){
        int parent = (child-1)/2;
        while(child>0){
            if (elem[child]>elem[parent]){//如果孩子节点大于双亲节点,换位置
               int tmp = elem[parent];
               elem[parent] = elem[child];
               elem[child] = tmp;
               child = parent;//更新孩子节点位置
               parent = (child-1)/2;//更新双亲点位置
            }else{
                break;
            }
        }
    }
    //判断是否满了
    public boolean isFull(){
        if (usedSize == elem.length) return true;
        else return false;
    }


🛸操作——出队列


  • 为了防止破坏堆的结构,删除时并不是直接将堆顶元素删除,而是用数组的最后一个元素替换堆顶元素
  • 有效元素个数要减一,这样就相当于把队尾(现在队尾存的是原堆顶元素)除掉了
  • 然后通过向下调整方式重新调整成堆

10.png

代码实现:

//出堆操作(出根节点)
    public void poll() {
        if(isEmpty()) {//先判断是否是空堆
            return;
        }
        int top = elem[0];//为了不破坏堆结构,不能直接删首元素,要先根尾部元素交换位置
        elem[0] = elem[this.usedSize-1];//数组头尾交换
        elem[usedSize-1] = top;//根节点元素已经来到了数组最后
        usedSize--;//有效值-1,就相当于删除数组尾部元素
        adjustDown(0,usedSize);//重新向下调整,使之重新变为堆
        //(这时候原来的根节点已经不算了,假设原来是10个节点的堆,现在只有9个了,要做的就是将这余下的9个从头向下调整为堆)
    }
   //判断是否为空堆
    public boolean isEmpty() {
        return this.usedSize == 0;
    }


🛸返回队首元素(优先级最高)


返回堆顶元素即可

//查看队首元素
    public int peek() {
        if(isEmpty()) {
            throw new RuntimeException("队列为空");
        }
        return this.elem[0];
    }

🛸Java中的优先级队列


PriorityQueue implements Queue


操作 方法① 方法②

入队列 add(e) offer(e)

出队列 remove() poll()

队首元素 element() peek()


🎄4.堆的应用——TopK问题


戳这里,我姥姥都能看懂,讲的很详细.


关键记得,找前 K 个最大的,就建 K 个大小的小堆


🎄5.堆的其他应用——堆排序

从小到大排序:先建大根堆

从大到小排序:先建小根堆

一定是先创建大堆/小堆


开始堆排序:

先交换 后调整 直到 0下标

从小到大排序 原理就是


根节点(当前树最大值)与队尾换位置,这样最大值的位置就确定了,在数组最后,end表示数组尾下标


然后end- -,再进行向下调整,使剩下的节点再变成堆,循环操作,直到end=0了,说明已经排好了

11.gif

代码实现:

//堆排序
public void heapSort() {
        int end = this.usedSize-1;
        while(end > 0) {
            int tmp = this.elem[0];
            this.elem[0] =this.elem[end];
            this.elem[end] = tmp;
            adjustDown(0,end);
            end--;
        }
    }





相关文章
|
8月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
280 1
|
6月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
339 3
|
8月前
|
存储 Java 编译器
Java 中 .length 的使用方法:深入理解 Java 数据结构中的长度获取机制
本文深入解析了 Java 中 `.length` 的使用方法及其在不同数据结构中的应用。对于数组,通过 `.length` 属性获取元素数量;字符串则使用 `.length()` 方法计算字符数;集合类如 `ArrayList` 采用 `.size()` 方法统计元素个数。此外,基本数据类型和包装类不支持长度属性。掌握这些区别,有助于开发者避免常见错误,提升代码质量。
829 1
|
11月前
|
存储 监控 Java
JAVA线程池有哪些队列? 以及它们的适用场景案例
不同的线程池队列有着各自的特点和适用场景,在实际使用线程池时,需要根据具体的业务需求、系统资源状况以及对任务执行顺序、响应时间等方面的要求,合理选择相应的队列来构建线程池,以实现高效的任务处理。
561 12
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
196 5
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1056 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
307 59
|
6月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
140 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
11月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
556 77

热门文章

最新文章