【Java数据结构】二叉树到底是什么品种的树?以及二叉树有哪些基操(二)

简介: 笔记

二叉树的储存


二叉树的存储结构分为: 顺序存储和类似于链表的链式存储

本文先介绍链式储存


二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,

孩子双亲表示法后序在平衡树位置介绍,本文采用孩子表示法来构建二叉树。

// 孩子表示法
class Node {
 int val; // 数据域
 Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
 Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
 int val; // 数据域
 Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
 Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
 Node parent; // 当前节点的根节点
}


二叉树的遍历(前中后序)


所谓 遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。


在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:


1.NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点—>根的左子树—>根的右子树。


10.png


2.LNR:中序遍历(Inorder Traversal)——根的左子树—>根节点—>根的右子树。


11.png



3.LRN:后序遍历(Postorder Traversal)——根的左子树—>根的右子树—>根节点。


12.png

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 实现代码在后边基本操作里


层序遍历


层序遍历嘛,就是按层,从上到下,从左到右遍历,这个没啥好说的。

设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

13.png


代码实现: 设置一个队列,利用队列先入先出的性质实现层序遍历,每出队一个节点,就判断这个节点是否有左右孩子节点,如果有,就将孩子节点入队


// 层序遍历
    public void levelOrderTraversal(TreeNode root){
        Queue<TreeNode> queue = new LinkedList<>();
        if (root==null){
            return ;
        }
        queue.offer(root);//一开始先将第一个根节点入队
        while(!queue.isEmpty()) {//一直弹出队列首元素,直到队列空为止
            TreeNode top = queue.poll();//记录每次弹出的节点
            System.out.print(top.value);
            if (top.left != null) {//判断当前弹出的节点是否有左孩子
                queue.offer(top.left);
            }
            if (top.right != null) {//判断当前弹出的节点是否有右孩子
                queue.offer(top.right);
            }
        }
    }

利用层序遍历,判断一棵树是不是完全二叉树


// 判断一棵树是不是完全二叉树
    boolean isCompleteTree(TreeNode root) {
        if(root == null) return true;
        //利用层序遍历,利用队列
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        //只要队列不为空就出列队头节点
        while(!queue.isEmpty()) {
            TreeNode top = queue.poll();
            if(top != null) {//如果出列的节点不为空
                queue.offer(top.left);//将节点的左节点入队
                queue.offer(top.right);//将节点的右节点入队
            }else{
                break;//如果出来的节点是空,就跳出当前循环
            }
        }
        //出列节点为空,或者队列空了
        while (!queue.isEmpty()) {//队列不为空
            TreeNode cur = queue.peek();//创建一个临时节点,查看队列对头结点,不是出队
            if(cur == null) {//如果现在队头节点为空
                queue.poll();//就弹出队头节点
            }else {//因为前边已经弹出过空节点了,再遇到不为空的节点的话
                return false;//说明二叉树不是完全二叉树
            }
        }
        return true;//队列空了,说明是完全二叉树
    }


二叉树的基本操作


前中后序遍历原理非常相似,都是采取递归思想,就是先判断当前根节点是否为空,然后三行代码交换位置玩,一行代表当前根节点的操作,一行代表左孩子节点,一行代表右孩子节点,每递归一次,左孩子节点或者右孩子节点就变成了当前递归方法中的当前根节点,他们继续访问他们的孩子节点,无限套娃,直到遇到空节点,再层层返回

// 前序遍历
   public void preOrderTraversal(TreeNode root){
       if (root==null){
           return;
       }
       System.out.print(root.value+" ");
       preOrderTraversal(root.left);
       preOrderTraversal(root.right);
   }
// 中序遍历
public void inOrderTraversal(TreeNode root){
   if (root==null){
       return;
   }
   inOrderTraversal(root.left);
   System.out.print(root.value+" ");
   inOrderTraversal(root.right);
}
// 后序遍历
public void postOrderTraversal(TreeNode root){
   if (root==null){
       return;
   }
   postOrderTraversal(root.left);
   postOrderTraversal(root.right);
   System.out.print(root.value+" ");
}

求节点个数,其实最简单的就是采用前序遍历,每遍历一个节点,计数器size就加一,遍历完所有节点,size值就是节点的个数

// 遍历思路-求结点个数  前序遍历
   static int size=0;
   public void getSize1(TreeNode root){
       if (root==null){
           return;
       }
       size++;
       getSize1(root.left);
      getSize1(root.right);
   }

还有一种方法求节点个数,子问题思路,整棵树的节点=左子树节点+右子树节点,把每个节点和它的孩子节点,看成一个整体,大事化小


14.png

  // 子问题思路-求结点个数
   public int getSize2(TreeNode root){
       if (root==null){
           return 0;
       }
       return getSize2(root.left)+getSize2(root.right)+1;
   }


遍历思路求叶子节点,叶子节点就是没有孩子的节点,故设置当遍历到左孩子和右孩子都为空的时候,叶子节点树+1


// 遍历思路-求叶子结点个数
   static int leafSize = 0;
   public void getLeafSize1(TreeNode root){
       if(root == null) {
           return;
       }
       if(root.left == null && root.right == null) {
           leafSize++;
       }
       getLeafSize1(root.left);
       getLeafSize1(root.right);
   }

另一种求叶子节点数的方法和子问题求节点数的方法类似,不过要设置一个条件,左孩子和右孩子都为空的时候才返回 1,来表示当前节点是一个叶子节点

15.png

 // 子问题思路-求叶子结点个数
    public int getLeafSize2(TreeNode root){
        if(root == null) {
            return 0;
        }
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafSize2(root.left) + getLeafSize2(root.right);
    }

求第K层节点个数其只需要多设置一个参数k就好了,请看图解


16.png

  // 子问题思路-求第 k 层结点个数
   public int getKLevelSize(TreeNode root,int k){
       if(root == null) {
           return 0;
       }
       if(k == 1) {
           return 1;
       }
       return getKLevelSize(root.left,k-1) + getKLevelSize(root.right,k-1);
   }

查找节点也是递归思想


// 查找 val 所在结点,没有找到返回 null
// 按照 根 -> 左子树 -> 右子树的顺序进行查找
// 一旦找到,立即返回,不需要继续在其他位置查找
public TreeNode find(TreeNode root, char val) {
   //先从根开始找
   if (root == null){
      return null;
  }
   if (root.value==val){
       return root;
   }
   //然后左子树找
   TreeNode ret = find(root.left,val);
   if (ret!=null){
       return ret;
   }
   //再右子树找
  ret = find(root.right,val);
   if (ret!=null){
       return ret;
   }
   return null;
}

获取高度首先得知道一个递推公式

整棵树的高度 = 左子树高度 > 右子树高度?左子树高度 : 右子树高度


   public int getHeight(TreeNode root){
       if (root==null){
           return 0;
       }
       int leftHeight = getHeight(root.left);
       int rightHeight = getHeight(root.right);
       return  (leftHeight >  rightHeight ? leftHeight :  rightHeight)+1;
   }

完整源码如下:

public class BinaryTree {
    public TreeNode createTree() {
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');
        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;
        return A;
    }
    // 前序遍历
    public void preOrderTraversal(TreeNode root){
        if (root==null){
            return;
        }
        System.out.print(root.value+" ");
        preOrderTraversal(root.left);
        preOrderTraversal(root.right);
    }
    // 中序遍历
    public void inOrderTraversal(TreeNode root){
        if (root==null){
            return;
        }
        inOrderTraversal(root.left);
        System.out.print(root.value+" ");
        inOrderTraversal(root.right);
    }
    // 后序遍历
    public void postOrderTraversal(TreeNode root){
        if (root==null){
            return;
        }
        postOrderTraversal(root.left);
        postOrderTraversal(root.right);
        System.out.print(root.value+" ");
    }
    // 遍历思路-求结点个数  前序遍历
    static int size=0;
    public void getSize1(TreeNode root){
        if (root==null){
            return;
        }
        size++;
        getSize1(root.left);
        getSize1(root.right);
    }
    // 子问题思路-求结点个数
    public int getSize2(TreeNode root){
        if (root==null){
            return 0;
        }
        return getSize2(root.left)+getSize2(root.right)+1;
    }
    // 遍历思路-求叶子结点个数
    static int leafSize = 0;
    public void getLeafSize1(TreeNode root){
        if(root == null) {
            return;
        }
        if(root.left == null && root.right == null) {
            leafSize++;
        }
        getLeafSize1(root.left);
        getLeafSize1(root.right);
    }
    // 子问题思路-求叶子结点个数
    public int getLeafSize2(TreeNode root){
        if(root == null) {
            return 0;
        }
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafSize2(root.left) + getLeafSize2(root.right);
    }
    // 子问题思路-求第 k 层结点个数
    public int getKLevelSize(TreeNode root,int k){
        if(root == null) {
            return 0;
        }
        if(k == 1) {
            return 1;
        }
        return getKLevelSize(root.left,k-1) + getKLevelSize(root.right,k-1);
    }
    // 查找 val 所在结点,没有找到返回 null
    // 按照 根 -> 左子树 -> 右子树的顺序进行查找
    // 一旦找到,立即返回,不需要继续在其他位置查找
    public TreeNode find(TreeNode root, char val) {
        if (root == null){
           return null;
       }
        if (root.value==val){
            return root;
        }
        TreeNode ret = find(root.left,val);
        if (ret!=null){
            return ret;
        }
        ret = find(root.right,val);
        if (ret!=null){
            return ret;
        }
        return null;
    }
    // 获取二叉树的高度
    public int getHeight(TreeNode root){
        if (root==null){
            return 0;
        }
        int leftHeight = getHeight(root.left);
        int rightHeight = getHeight(root.right);
        //return  (getHeight(root.left) >  getHeight(root.right) ? getHeight(root.left)+1 :  getHeight(root.right)+1);
        return  (leftHeight >  rightHeight ? leftHeight :  rightHeight)+1;
    }
}
public class Test {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        TreeNode root = binaryTree.createTree();
        binaryTree.preOrderTraversal(root);
        System.out.println();
        binaryTree.inOrderTraversal(root);
        System.out.println();
        binaryTree.postOrderTraversal(root);
        System.out.println();
        binaryTree.getSize1(root);
        System.out.println(BinaryTree.size);
        System.out.println(binaryTree.getSize2(root));
        System.out.println(binaryTree.getKLevelSize(root, 3));
        System.out.println(binaryTree.find(root, 'H').value);
        System.out.println(binaryTree.getHeight(root));
    }
}



相关文章
|
2月前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
67 0
|
12天前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
49 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
12天前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
36 12
|
12天前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
37 10
|
12天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
37 2
|
26天前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
1月前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
49 5
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
87 5
|
2月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
112 4
|
2月前
|
算法
数据结构之文件系统模拟(树数据结构)
本文介绍了文件系统模拟及其核心概念,包括树状数据结构、节点结构、文件系统类和相关操作。通过构建虚拟环境,模拟文件的创建、删除、移动、搜索等操作,展示了文件系统的基本功能和性能。代码示例演示了这些操作的具体实现,包括文件和目录的创建、移动和删除。文章还讨论了该算法的优势和局限性,如灵活性高但节点移除效率低等问题。
79 0