python装饰器应用 一行代码为你的函数增加日志服务

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: python装饰器应用 一行代码为你的函数增加日志服务

1 什么是装饰器?

Python修饰器基于闭包原理,是赋予已存在的函数对象额外定制化功能的设计模式,使得代码简洁且易于维护,常用于插入日志、性能测试、权限校验等需求场景。例如某个具有登录功能的函数,现在希望添加数字签证核验功能,即可使用修饰器处理登录函数而无需变更登录函数的底层。Python语法糖@定义了修饰器

2 最通用的例子

def app(func):
    def warp(*args, **kwargs):
        print("正在执行功能1")
        result = func(*args, **kwargs)
        print("正在执行功能2")
        return result
    return warp
@app
def add(a, b):
    return a + b
print(add(1,3))
# 正在执行功能1
# 正在执行功能2
# 4

*args**kwargs用于接收被修饰函数的入口参数,*args、**kwargs分别用于将参数打包成tuple、dict给函数体调用。从上面可以看出,在不修改底层add函数的情况下,可以定制新功能。

3 实现日志打印修饰器

根据修饰器的原理,对上面的例子做小改动如下:

import logging
def log(func):
    def warp(*args, **kwargs):
        try:
            result = func(*args, **kwargs)
            return result
        except Exception as e:
            logging.error(e)
    return warp

这里使用try-except结构可以即使捕获异常信息输出到日志文件。

在某些应用场景,上面的结构还可以改进,比如Web服务可能要在输出日志后给前端反馈一个404代码,因此在增加一个定制化的返回内容err

def logger(err):
    def log(func):
        def warp(*args, **kwargs):
            try:
                result = func(*args, **kwargs)
                return result
            except Exception as e:
                logging.error(e)
                return err
        return warp
    return log

4 配置logging输出格式

import logging, os
'''
* %(asctime)s   即日志记录时间,精确到毫秒
* %(levelname)s 即此条日志级别 
* %(filename)s  即触发日志记录的python文件名
* %(funcName)s  即触发日志记录的函数名
* %(lineno)s    即触发日志记录代码的行号
* %(message)s   即这项调用中的参数
'''
if not os.path.exists('Log.log'):
    file = open('Log.log','w')
logging.basicConfig(
    filename='Log.log',
    format="%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(lineno)s - %(message)s"
)

5 测试

@logger('加法环节出错了!')
def add(a, b):
  return a + b
# 正常情况
print(add(1, 2))    # 输出3
# 异常情况
print(add(1, '2'))    # 输出“加法环节出错了!”
# Log.log中的记录
2021-10-22 21:34:54,736 - ERROR - test.py - warp - 51 - unsupported operand type(s) for +: 'int' and 'str'

于是只要把上面说的logger函数封装成单独一个文件,在其他位置import logger并用修饰器修饰你希望增加日志功能的函数即可,非常方便

6 附:完整代码

import logging, os
'''
* %(asctime)s   即日志记录时间,精确到毫秒@breif: 
* %(levelname)s 即此条日志级别@param[in]: 
* %(filename)s  即触发日志记录的python文件名@retval: 
* %(funcName)s  即触发日志记录的函数名
* %(lineno)s    即触发日志记录代码的行号
* %(message)s   即这项调用中的参数
'''
if not os.path.exists('Log.log'):
    file = open('Log.log','w')
logging.basicConfig(
    filename='Log.log',
    format="%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(lineno)s - %(message)s"
)
'''
* @breif: 日志修饰器,为函数添加日志记录服务
* @param[in]: err -> 发生异常时返回的错误信息
* @retval: 加载日志服务的功能函数
'''
def logger(err):
    def log(func):
        def warp(*args, **kwargs):
            try:
                result = func(*args, **kwargs)
                return result
            except Exception as e:
                logging.error(e)
                return err
        return warp
    return log
@logger('出错了')
def add(a, b):
    return a+b
print(add(1,'2'))


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
27天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
59 20
|
21天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
96 61
Python装饰器实战:打造高效性能计时工具
|
21天前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
82 59
|
4天前
|
运维 应用服务中间件 nginx
docker运维查看指定应用log文件位置和名称
通过本文的方法,您可以更高效地管理和查看Docker容器中的日志文件,确保应用运行状态可控和可监测。
62 28
|
11天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
89 9
|
1月前
|
存储 人工智能 JSON
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
RAG Logger 是一款专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、检索结果记录、LLM 交互记录和性能监控等功能。
64 7
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
|
2月前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
126 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
17天前
|
存储 SQL 大数据
Python 在企业级应用中的两大硬伤
关系数据库和SQL在企业级应用中面临诸多挑战,如复杂SQL难以移植、数据库负担重、应用间强耦合等。Python虽是替代选择,但在大数据运算和版本管理方面存在不足。SPL(esProc Structured Programming Language)作为开源语言,专门针对结构化数据计算,解决了Python的这些硬伤。它提供高效的大数据运算能力、并行处理、高性能文件存储格式(如btx、ctx),以及一致的版本管理,确保企业级应用的稳定性和高性能。此外,SPL与Java无缝集成,适合现代J2EE体系应用,简化开发并提升性能。
|
3月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
873 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
2月前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。