一文搞懂 CountDownLatch 用法和源码!(二)

简介: CountDownLatch 是多线程控制的一种工具,它被称为 门阀、 计数器或者 闭锁。这个工具经常用来用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)。下面我们就来一起认识一下 CountDownLatch

Sync 内部类

CountDownLatch 在其内部是一个 Sync ,它继承了 AQS 抽象类。

private static final class Sync extends AbstractQueuedSynchronizer {...}

CountDownLatch 其实其内部只有一个 sync 属性,并且是 final 的

private final Sync sync;

CountDownLatch 只有一个带参数的构造方法

public CountDownLatch(int count) {
  if (count < 0) throw new IllegalArgumentException("count < 0");
  this.sync = new Sync(count);
}

也就是说,初始化的时候必须指定计数器的数量,如果数量为负会直接抛出异常。

然后把 count 初始化为 Sync 内部的 count,也就是

Sync(int count) {
  setState(count);
}

注意这里有一个 setState(count),这是什么意思呢?见闻知意这只是一个设置状态的操作,但是实际上不单单是,还有一层意思是 state 的值代表着待达到条件的线程数。这个我们在聊 countDown 方法的时候再讨论。

getCount() 方法的返回值是 getState() 方法,它是 AbstractQueuedSynchronizer 中的方法,这个方法会返回当前线程计数,具有 volatile 读取的内存语义。

// ---- CountDownLatch ----
int getCount() {
  return getState();
}
// ---- AbstractQueuedSynchronizer ----
protected final int getState() {
  return state;
}

tryAcquireShared() 方法用于获取·共享状态下对象的状态,判断对象是否为 0 ,如果为 0 返回 1 ,表示能够尝试获取,如果不为 0,那么返回 -1,表示无法获取。

protected int tryAcquireShared(int acquires) {
  return (getState() == 0) ? 1 : -1;
}
// ----  getState() 方法和上面的方法相同 ----

这个 共享状态 属于 AQS 中的概念,在 AQS 中分为两种模式,一种是 独占模式,一种是 共享模式

  • tryAcquire 独占模式,尝试获取资源,成功则返回 true,失败则返回 false。
  • tryAcquireShared 共享方式,尝试获取资源。负数表示失败;0 表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。

tryReleaseShared() 方法用于共享模式下的释放

protected boolean tryReleaseShared(int releases) {
  // 减小数量,变为 0 的时候进行通知。
  for (;;) {
    int c = getState();
    if (c == 0)
      return false;
    int nextc = c-1;
    if (compareAndSetState(c, nextc))
      return nextc == 0;
  }
}

这个方法是一个无限循环,获取线程状态,如果线程状态是 0 则表示没有被线程占有,没有占有的话那么直接返回 false ,表示已经释放;然后下一个状态进行 - 1 ,使用 compareAndSetState CAS 方法进行和内存值的比较,如果内存值也是 1 的话,就会更新内存值为 0 ,判断 nextc 是否为 0 ,如果 CAS 比较不成功的话,会再次进行循环判断。

如果 CAS 用法不清楚的话,读者朋友们可以参考这篇文章

告诉你一个 AtomicInteger 的惊天大秘密!

await 方法

await() 方法是 CountDownLatch 一个非常重要的方法,基本上可以说只有 countDown 和 await 方法才是 CountDownLatch 的精髓所在,这个方法将会使当前线程在 CountDownLatch 计数减至零之前一直等待,除非线程被中断。

CountDownLatch 中的 await 方法有两种,一种是不带任何参数的 await(),一种是可以等待一段时间的await(long timeout, TimeUnit unit)。下面我们先来看一下 await() 方法。

public void await() throws InterruptedException {
  sync.acquireSharedInterruptibly(1);
}

await 方法内部会调用 acquireSharedInterruptibly 方法,这个 acquireSharedInterruptibly 是 AQS 中的方法,以共享模式进行中断。

public final void acquireSharedInterruptibly(int arg)
  throws InterruptedException {
  if (Thread.interrupted())
    throw new InterruptedException();
  if (tryAcquireShared(arg) < 0)
    doAcquireSharedInterruptibly(arg);
}

可以看到,acquireSharedInterruptibly 方法的内部会首先判断线程是否中断,如果线程中断,则直接抛出线程中断异常。如果没有中断,那么会以共享的方式获取。如果能够在共享的方式下不能获取锁,那么就会以共享的方式断开链接。

private void doAcquireSharedInterruptibly(int arg)
  throws InterruptedException {
  final Node node = addWaiter(Node.SHARED);
  boolean failed = true;
  try {
    for (;;) {
      final Node p = node.predecessor();
      if (p == head) {
        int r = tryAcquireShared(arg);
        if (r >= 0) {
          setHeadAndPropagate(node, r);
          p.next = null; // help GC
          failed = false;
          return;
        }
      }
      if (shouldParkAfterFailedAcquire(p, node) &&
          parkAndCheckInterrupt())
        throw new InterruptedException();
    }
  } finally {
    if (failed)
      cancelAcquire(node);
  }
}

这个方法有些长,我们分开来看

  • 首先,会先构造一个共享模式的 Node 入队
  • 然后使用无限循环判断新构造 node 的前驱节点,如果 node 节点的前驱节点是头节点,那么就会判断线程的状态,这里调用了一个 setHeadAndPropagate ,其源码如下
private void setHeadAndPropagate(Node node, int propagate) {
  Node h = head; 
  setHead(node);
  if (propagate > 0 || h == null || h.waitStatus < 0 ||
      (h = head) == null || h.waitStatus < 0) {
    Node s = node.next;
    if (s == null || s.isShared())
      doReleaseShared();
  }
}

首先会设置头节点,然后进行一系列的判断,获取节点的获取节点的后继,以共享模式进行释放,就会调用 doReleaseShared 方法,我们再来看一下 doReleaseShared 方法

private void doReleaseShared() {
  for (;;) {
    Node h = head;
    if (h != null && h != tail) {
      int ws = h.waitStatus;
      if (ws == Node.SIGNAL) {
        if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
          continue;            // loop to recheck cases
        unparkSuccessor(h);
      }
      else if (ws == 0 &&
               !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
        continue;                // loop on failed CAS
    }
    if (h == head)                   // loop if head changed
      break;
  }
}

这个方法会以无限循环的方式首先判断头节点是否等于尾节点,如果头节点等于尾节点的话,就会直接退出。如果头节点不等于尾节点,会判断状态是否为 SIGNAL,不是的话就继续循环 compareAndSetWaitStatus,然后断开后继节点。如果状态不是 SIGNAL,也会调用 compareAndSetWaitStatus 设置状态为 PROPAGATE,状态为 0 并且不成功,就会继续循环。

也就是说 setHeadAndPropagate 就是设置头节点并且释放后继节点的一系列过程。

  • 我们来看下面的 if 判断,也就是 shouldParkAfterFailedAcquire(p, node) 这里
if (shouldParkAfterFailedAcquire(p, node) &&
    parkAndCheckInterrupt())
  throw new InterruptedException();

如果上面 Node p = node.predecessor() 获取前驱节点不是头节点,就会进行 park 断开操作,判断此时是否能够断开,判断的标准如下

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
  int ws = pred.waitStatus;
  if (ws == Node.SIGNAL)
    return true;
  if (ws > 0) {
    do {
      node.prev = pred = pred.prev;
    } while (pred.waitStatus > 0);
    pred.next = node;
  } else {
    compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
  }
  return false;
}

这个方法会判断 Node p 的前驱节点的结点状态(waitStatus),节点状态一共有五种,分别是

  1. CANCELLED(1):表示当前结点已取消调度。当超时或被中断(响应中断的情况下),会触发变更为此状态,进入该状态后的结点将不会再变化。
  2. SIGNAL(-1):表示后继结点在等待当前结点唤醒。后继结点入队时,会将前继结点的状态更新为 SIGNAL。
  3. CONDITION(-2):表示结点等待在 Condition 上,当其他线程调用了 Condition 的 signal() 方法后,CONDITION状态的结点将从等待队列转移到同步队列中,等待获取同步锁。
  4. PROPAGATE(-3):共享模式下,前继结点不仅会唤醒其后继结点,同时也可能会唤醒后继的后继结点。
  5. 0:新结点入队时的默认状态。

如果前驱节点是 SIGNAL 就会返回 true 表示可以断开,如果前驱节点的状态大于 0 (此时为什么不用 ws == Node.CANCELLED ) 呢?因为 ws 大于 0 的条件只有 CANCELLED 状态了。然后就是一系列的查找遍历操作直到前驱节点的 waitStatus > 0。如果 ws <= 0 ,而且还不是 SIGNAL 状态的话,就会使用 CAS 替换前驱节点的 ws 为 SIGNAL 状态。

如果检查判断是中断状态的话,就会返回 false。

private final boolean parkAndCheckInterrupt() {
  LockSupport.park(this);
  return Thread.interrupted();
}

这个方法使用 LockSupport.park 断开连接,然后返回线程是否中断的标志。

  • cancelAcquire() 用于取消等待队列,如果等待过程中没有成功获取资源(如timeout,或者可中断的情况下被中断了),那么取消结点在队列中的等待。
private void cancelAcquire(Node node) {
  if (node == null)
    return;
  node.thread = null;
  Node pred = node.prev;
  while (pred.waitStatus > 0)
    node.prev = pred = pred.prev;
  Node predNext = pred.next;
  node.waitStatus = Node.CANCELLED;
  if (node == tail && compareAndSetTail(node, pred)) {
    compareAndSetNext(pred, predNext, null);
  } else {
    int ws;
    if (pred != head &&
        ((ws = pred.waitStatus) == Node.SIGNAL ||
         (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
        pred.thread != null) {
      Node next = node.next;
      if (next != null && next.waitStatus <= 0)
        compareAndSetNext(pred, predNext, next);
    } else {
      unparkSuccessor(node);
    }
    node.next = node; // help GC
  }
}

所以,对 CountDownLatch 的 await 调用大致会有如下的调用过程。

微信图片_20220418191646.png

一个和 await 重载的方法是 await(long timeout, TimeUnit unit),这个方法和 await 最主要的区别就是这个方法能够可以等待计数器一段时间再执行后续操作。

countDown 方法

countDown 是和 await 同等重要的方法,countDown 用于减少计数器的数量,如果计数减为 0 的话,就会释放所有的线程。

public void countDown() {
  sync.releaseShared(1);
}

这个方法会调用 releaseShared 方法,此方法用于共享模式下的释放操作,首先会判断是否能够进行释放,判断的方法就是 CountDownLatch 内部类 Sync 的 tryReleaseShared 方法

public final boolean releaseShared(int arg) {
  if (tryReleaseShared(arg)) {
    doReleaseShared();
    return true;
  }
  return false;
}
// ---- CountDownLatch ----
protected boolean tryReleaseShared(int releases) {
  for (;;) {
    int c = getState();
    if (c == 0)
      return false;
    int nextc = c-1;
    if (compareAndSetState(c, nextc))
      return nextc == 0;
  }
}

tryReleaseShared 会进行 for 循环判断线程状态值,使用 CAS 不断尝试进行替换。

如果能够释放,就会调用 doReleaseShared 方法

private void doReleaseShared() {
  for (;;) {
    Node h = head;
    if (h != null && h != tail) {
      int ws = h.waitStatus;
      if (ws == Node.SIGNAL) {
        if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
          continue;            // loop to recheck cases
        unparkSuccessor(h);
      }
      else if (ws == 0 &&
               !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
        continue;                // loop on failed CAS
    }
    if (h == head)                   // loop if head changed
      break;
  }
}

可以看到,doReleaseShared 其实也是一个无限循环不断使用 CAS 尝试替换的操作。

总结

本文是 CountDownLatch 的基本使用和源码分析,CountDownLatch 就是一个基于 AQS 的计数器,它内部的方法都是围绕 AQS 框架来谈的,除此之外还有其他比如 ReentrantLock、Semaphore 等都是 AQS 的实现,所以要研究并发的话,离不开对 AQS 的探讨。CountDownLatch 的源码看起来很少,比较简单,但是其内部比如 await 方法的调用链路却很长,也值得花费时间深入研究。

我是 cxuan,一枚技术创作的程序员。如果本文你觉得不错的话,跪求读者点赞、在看、分享!

另:欢迎添加 cxuan 的个人微信 becomecxuan,朋友圈不定期送书,带你参加每日一题,与大神交流,找到自己的圈子!

相关文章
CountDownLatch实现原理全面解析
CountDownLatch是一个同步工具类,用来协调多个线程之间的同步(即:用于线程之间的通信而不是互斥)。它允许一个或多个线程进入等待状态,直到其他线程执行完毕后,这些等待的线程才继续执行。
|
6月前
|
Java 测试技术
Java多线程的一些基本例子
【5月更文挑战第17天】Java多线程允许并发执行任务。示例1展示创建并启动两个`MyThread`对象,各自独立打印&quot;Hello World&quot;。示例2的`CounterExample`中,两个线程(IncrementThread和DecrementThread)同步地增加和减少共享计数器,确保最终计数为零。这些例子展示了Java线程的基本用法,包括线程同步,还有如Executor框架和线程池等更复杂的用例。
57 0
|
3月前
|
Java 调度
【多线程面试题十四】、说一说synchronized的底层实现原理
这篇文章解释了Java中的`synchronized`关键字的底层实现原理,包括它在代码块和方法同步中的实现方式,以及通过`monitorenter`和`monitorexit`指令以及`ACC_SYNCHRONIZED`访问标志来控制线程同步和锁的获取与释放。
|
5月前
|
存储 并行计算 算法
深入解析Java并发库(JUC)中的Phaser:原理、应用与源码分析
深入解析Java并发库(JUC)中的Phaser:原理、应用与源码分析
CyclicBarrier 和 CountDownLatch 的实现原理与代码演示
CyclicBarrier 和 CountDownLatch 的实现原理与代码演示
158 0
|
Java 开发者
JUC系列学习(三):ReentrantLock的使用、源码解析及与Synchronized的异同
`ReentrantLock`同`Synchronized`一样可以实现线程锁的功能,同样具有可重入性,除此之外还可以实现公平锁&非公平锁,其底层是基于`AQS`框架实现的。
|
缓存 Java 编译器
JUC并发编程学习(十七) -5分钟搞懂volatile
JUC并发编程学习(十七) -5分钟搞懂volatile
JUC并发编程学习(十七) -5分钟搞懂volatile
|
程序员 调度
一文搞懂 CountDownLatch 用法和源码!(二)
CountDownLatch 是多线程控制的一种工具,它被称为 门阀、 计数器或者 闭锁。这个工具经常用来用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)。下面我们就来一起认识一下 CountDownLatch
72 0
一文搞懂 CountDownLatch 用法和源码!(二)
一文搞懂 CountDownLatch 用法和源码!(一)
CountDownLatch 是多线程控制的一种工具,它被称为 门阀、 计数器或者 闭锁。这个工具经常用来用来协调多个线程之间的同步,或者说起到线程之间的通信(而不是用作互斥的作用)。下面我们就来一起认识一下 CountDownLatch
102 0
一文搞懂 CountDownLatch 用法和源码!(一)