python数据分析基础010 -利用pandas带你玩转excel表格(终篇)

简介: python数据分析基础010 -利用pandas带你玩转excel表格(终篇)

文章要点

image.pngimage.png

🍺前言image.png🔅(一)读取其他文件image.png

💨1.excel读取其他文件image.png

💦1.1 导入csv文件image.png💦1.2 导入tsv文件image.png💦1.3 导入txt文本文件image.png

💨2.pandas读取其他文件image.png

💦2.1 读取csv文件

import pandas as pd
# 导入csv文件
test1 = pd.read_csv('./excel/test12.csv',index_col="ID")
df1 = pd.DataFrame(test1)
print(df1)

💦2.2 读取tsv文件image.png

import pandas as pd
# 导入tsv文件
test3 = pd.read_csv("./excel/test11.tsv",sep='\t')
df3 = pd.DataFrame(test3)
print(df3)

💦2.3 读取txt文件

import pandas as pd
# 导入txt文件
test2 = pd.read_csv("./excel/test13.txt",sep='|')
df2 = pd.DataFrame(test2)
print(df2)

结果:

🔅(二)数据透视表

在excel中存在多种数据,且分为很多类型,这时使用数据透视表就会很方便也很直观的为我们分析出各种我们想要的数据了。

实例:将下列数据绘制成一个透视表,并绘制出按总类分每年的销售额!

💨1.在excel中制作透视表

需要按照年份来分,则我们需要将date列拆分,把年份拆分出来。随后在数据栏下选择数据透视表,选择区域即可。

随后将各部分数据拖动到各区域即可。

结果:

这样就在excel中完成了数据透视表的制作。

那么在pandas中要怎么实现这一效果呢?

💨2.在pandas中绘制透视表image.png

import pandas as pd
import numpy as np
pd.options.display.max_columns =999
test = pd.read_excel('./excel/test14.xlsx')
df = pd.DataFrame(test)
# 将年份取出并新建一个列名为年份的列
df['year'] = pd.DatetimeIndex(df['Date']).year
# 绘制透视表
table = df.pivot_table(index='总类',columns='year',values='销售额',aggfunc=np.sum)
df1 = pd.DataFrame(table)
df1['总计'] = df1[[2011,2012,2013,2014]].sum(axis=1)
print(df1)

结果:

image.png

import pandas as pd
import numpy as np
pd.options.display.max_columns =999
test = pd.read_excel('./excel/test14.xlsx')
df = pd.DataFrame(test)
# 将年份取出并新建一个列名为年份的列
df['year'] = pd.DatetimeIndex(df['Date']).year
# groupby方法
group = df.groupby(['总类','year'])
s= group['销售额'].sum()
c = group['ID'].count()
table = pd.DataFrame({'sum':s,'total':c})
print(table)

结果:

🍻结语今天的内容就到这里啦,希望看到此文的小伙伴能有所收获,觉得不错的话还望三连支持一波啊,关注我,咱们下期再见!!

相关文章
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
277 0
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
442 0
|
4月前
|
移动开发 JavaScript
(H5查看CAD)网页CAD提取图纸表格到excel
本文介绍如何通过自定义MxCAD插件,在Web端智能识别CAD图纸中的表格,实现自动合并与高效导出至Excel,提升数据提取效率与准确性。内容涵盖区域选择、图形识别、表格结构重建、单元格合并及内容导出等关键技术,适用于工程图纸数据自动化处理场景。
|
4月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
400 0
|
9月前
|
JavaScript 前端开发 数据可视化
20.6K star!Excel级交互体验!这款开源Web表格神器绝了!
Handsontable 是一款功能强大的 JavaScript 数据表格组件,提供类 Excel 的交互体验。支持实时协作、数据绑定、公式计算等企业级功能,可轻松集成到 React/Vue/Angular 等主流框架。
1694 11
|
9月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
1232 2
|
10月前
|
数据可视化 数据挖掘 BI
表格软件推荐:为何选择VeryReport让数据分析和报表生成更高效?
表格软件推荐:为何选择VeryReport让数据分析和报表生成更高效?
|
10月前
|
Python
python pandas学习(一)
该代码段展示了四个主要操作:1) 删除指定列名,如商品id;2) 使用正则表达式模糊匹配并删除列,例如匹配订单商品名称1的列;3) 将毫秒级时间戳转换为带有时区调整的日期时间格式,并增加8小时以适应本地时区;4) 将列表转换为DataFrame后保存为Excel文件,文件路径和名称根据变量拼接而成。
145 3
|
11月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
320 2
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
360 0

热门文章

最新文章

推荐镜像

更多