BP神经网络

简介: BP神经网络

1 BP神经网络介绍

多层感知器可以很好的解决分类问题,但是单层感知器的权值调整算法无法
运用到多层感知器中(无法确定隐藏层的期望输出)。而随着误差反向传播算法(Error
Back Propagation, BP)的提出, 解决了多层神经网络的学习问题, 故人们称这种采用
误差反向传播算法训练的多层神经网络称为BP网络。 BP网络的学习过程由信号的正向
传播和反向传播两个过程组成:
· 正向传播时信号从输入层计算各层加权和经由各隐层最终传递到输出层,得到输出结
果· 输出结果与期望结果(监督信号)比较得到输出误差,误差反传是依照梯度下降算法
将误差沿着隐藏层到输入层逐层反传,将误差分摊给各层的所有单元,从而得到各个
单元的误差信号(学习信号),据此修改各单元权值

2 网络结构

在这里插入图片描述
其中的向量定义如下
在这里插入图片描述

3 研究步骤-输出

在这里插入图片描述
研究步骤-代价函数

· 3 权值调整:
这里我们用代价函数E来描述网络误差,使用随机梯度下降(SGD,Stochastic
Gradient Descent)策略, 以代价函数的负梯度方向对参数进行调整。每次只针对
一个训练样例更新权值。这种算法被称作误差逆传播(error Back Propagation)算
法,简称标准BP算法

在这里插入图片描述
研究步骤-梯度下降反向调整权值

在这里插入图片描述

4 bp算法推导

在这里插入图片描述

5 学习算法步骤——标准化、初始化

1 观察输入向量,一般需要标准化,当量纲差别不大是不需要标准化。
· 2 初始化:

  • 选取学习率η(0 < η ≤ 1) - 对权值矩阵、赋初值(较小的非零随机数)
  • 根据循环训练的需要定义训练集内样本计数器p = 1(全部样本训练完一次后归

一)和训练次数计数器q = 1(记录总的训练次数),误差E = 0(记录每次的训
练误差)。给出训练需要满足的精度Emin,设定最大迭代次数M

学习算法步骤——计算

在这里插入图片描述
学习算法步骤——调整权重、循环:
在这里插入图片描述

6 学习算法步骤——流程图

在这里插入图片描述

7 拓展——累积BP算法

除了标准BP算法,还有另一种基于标准梯度下降(BGD,Batch Gradient Descent)策
略的BP算法(累积BP算法). 相较于标准BP算法的对于每个样本都要回传误差调整权值,
累积BP算法是在所有样本输入后计算总误差然后调整权值,总误差
在这里插入图片描述
累积BP算法在样本数多的情况下学习速度快很多;而
标准BP算法往往会获得较好的解

目录
相关文章
|
26天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
165 80
|
10天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
20天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
1月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
2月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
3月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
72 2
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
72 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
59 10

热门文章

最新文章