基于 Python 的 8 种常用抽样方法

简介: 抽样是统计学、机器学习中非常重要,也是经常用到的方法,因为大多时候使用全量数据是不现实的,或者根本无法取到。所以我们需要抽样,比如在推断性统计中,我们会经常通过采样的样本数据来推断估计总体的样本。

抽样是统计学、机器学习中非常重要,也是经常用到的方法,因为大多时候使用全量数据是不现实的,或者根本无法取到。所以我们需要抽样,比如在推断性统计中,我们会经常通过采样的样本数据来推断估计总体的样本。

上面所说的都是以概率为基础的,实际上还有一类非概率的抽样方法,因此总体上归纳为两大种类:

  1. 概率抽样:根据概率理论选择样本,每个样本有相同的概率被选中。
  2. 非概率抽样:根据非随机的标准选择样本,并不是每个样本都有机会被选中。


概率抽样技术


1.随机抽样(Random Sampling)


这也是最简单暴力的一种抽样了,就是直接随机抽取,不考虑任何因素,完全看概率。并且在随机抽样下,总体中的每条样本被选中的概率相等。

38.png


比如,现有10000条样本,且各自有序号对应的,假如抽样数量为1000,那我就直接从1-10000的数字中随机抽取1000个,被选中序号所对应的样本就被选出来了。

Python中,我们可以用random函数随机生成数字。下面就是从100个人中随机选出5个。

import random
population = 100
data = range(population)
print(random.sample(data,5))
> 4, 19, 82, 45, 41


2.分层抽样(Stratified Sampling)


分层抽样其实也是随机抽取,不过要加上一个前提条件了。在分层抽样下,会根据一些共同属性将带抽样样本分组,然后从这些分组中单独再随机抽样。

39.png


因此,可以说分层抽样是更精细化的随机抽样,它要保持与总体群体中相同的比例。 比如,机器学习分类标签中的类标签0和1,比例为3:7,为保持原有比例,那就可以分层抽样,按照每个分组单独随机抽样。

Python中我们通过train_test_split设置stratify参数即可完成分层操作。

from sklearn.model_selection import train_test_split
stratified_sample, _ = train_test_split(population, test_size=0.9, stratify=population[['label']])
print (stratified_sample)


3.聚类抽样(Cluster Sampling)


聚类抽样,也叫整群抽样。它的意思是,先将整个总体划分为多个子群体,这些子群体中的每一个都具有与总体相似的特征。也就是说它不对个体进行抽样,而是随机选择整个子群体。

40.png


Python可以先给聚类的群体分配聚类ID,然后随机抽取两个子群体,再找到相对应的样本值即可,如下。


import numpy as np
clusters=5
pop_size = 100
sample_clusters=2
# 间隔为 20, 从 1 到 5 依次分配集群100个样本的聚类 ID,这一步已经假设聚类完成
cluster_ids = np.repeat([range(1,clusters+1)], pop_size/clusters)
# 随机选出两个聚类的 ID
cluster_to_select = random.sample(set(cluster_ids), sample_clusters)
# 提取聚类 ID 对应的样本
indexes = [i for i, x in enumerate(cluster_ids) if x in cluster_to_select]
# 提取样本序号对应的样本值
cluster_associated_elements = [el for idx, el in enumerate(range(1, 101)) if idx in indexes]
print (cluster_associated_elements)


4.系统抽样(Systematic Sampling)


系统抽样是以预定的规则间隔(基本上是固定的和周期性的间隔)从总体中抽样。比如,每 9 个元素抽取一下。一般来说,这种抽样方法往往比普通随机抽样方法更有效。

下图是按顺序对每 9 个元素进行一次采样,然后重复下去。

41.png


Python实现的话可以直接在循环体中设置step即可。

population = 100
step = 5
sample = [element for element in range(1, population, step)]
print (sample)


5.多级采样(Multistage sampling)


在多阶段采样下,我们将多个采样方法一个接一个地连接在一起。比如,在第一阶段,可以使用聚类抽样从总体中选择集群,然后第二阶段再进行随机抽样,从每个集群中选择元素以形成最终集合。

42.png

Python代码复用了上面聚类抽样,只是在最后一步再进行随机抽样即可。


import numpy as np
clusters=5
pop_size = 100
sample_clusters=2
sample_size=5
# 间隔为 20, 从 1 到 5 依次分配集群100个样本的聚类 ID,这一步已经假设聚类完成
cluster_ids = np.repeat([range(1,clusters+1)], pop_size/clusters)
# 随机选出两个聚类的 ID
cluster_to_select = random.sample(set(cluster_ids), sample_clusters)
# 提取聚类 ID 对应的样本
indexes = [i for i, x in enumerate(cluster_ids) if x in cluster_to_select]
# 提取样本序号对应的样本值
cluster_associated_elements = [el for idx, el in enumerate(range(1, 101)) if idx in indexes]
# 再从聚类样本里随机抽取样本
print (random.sample(cluster_associated_elements, sample_size))


非概率抽样技术


非概率抽样,毫无疑问就是不考虑概率的方式了,很多情况下是有条件的选择。因此,对于无随机性我们是无法通过统计概率和编程来实现的。这里也介绍3种方法。


1.简单采样(convenience sampling)


简单采样,其实就是研究人员只选择最容易参与和最有机会参与研究的个体。比如下面的图中,蓝点是研究人员,橙色点则是蓝色点附近最容易接近的人群。


43.png


2.自愿抽样(Voluntary Sampling)


自愿抽样下,感兴趣的人通常通过填写某种调查表格形式自行参与的。所以,这种情况中,调查的研究人员是没有权利选择任何个体的,全凭群体的自愿报名。比如下图中蓝点是研究人员,橙色的是自愿同意参与研究的个体。

44.png


3.雪球抽样(Snowball Sampling)

雪球抽样是说,最终集合是通过其他参与者选择的,即研究人员要求其他已知联系人寻找愿意参与研究的人。比如下图中蓝点是研究人员,橙色的是已知联系人,黄色是是橙色点周围的其它联系人。

45.png


总结


以上就是8种常用抽样方法,平时工作中比较常用的还是概率类抽样方法,因为没有随机性我们是无法通过统计学和编程完成自动化操作的。

比如在信贷的风控样本设计时,就需要从样本窗口通过概率进行抽样。因为采样的质量基本就决定了你模型的上限了,所以在抽样时会考虑很多问题,如样本数量、是否有显著性、样本穿越等等。在这时,一个良好的抽样方法是至关重要的。

以上就是本次分享,原创不易,欢迎点赞、留言、分享,支持我继续写下去。

相关文章
|
24天前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
WK
|
11天前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
65 36
|
22天前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
58 2
11种经典时间序列预测方法:理论、Python实现与应用
|
18天前
|
开发者 Python
Python中的魔法方法与运算符重载
在Python的奇妙世界里,魔法方法(Magic Methods)和运算符重载(Operator Overloading)是两个强大的特性,它们允许开发者以更自然、更直观的方式操作对象。本文将深入探讨这些概念,并通过实例展示如何利用它们来增强代码的可读性和表达力。
|
1月前
|
数据处理 Python
Python 高级技巧:深入解析读取 Excel 文件的多种方法
在数据分析中,从 Excel 文件读取数据是常见需求。本文介绍了使用 Python 的三个库:`pandas`、`openpyxl` 和 `xlrd` 来高效处理 Excel 文件的方法。`pandas` 提供了简洁的接口,而 `openpyxl` 和 `xlrd` 则针对不同版本的 Excel 文件格式提供了详细的数据读取和处理功能。此外,还介绍了如何处理复杂格式(如合并单元格)和进行性能优化(如分块读取)。通过这些技巧,可以轻松应对各种 Excel 数据处理任务。
133 16
|
30天前
|
Python
Python中的push方法详解与实例
Python中的push方法详解与实例
|
1月前
|
存储 Python
python列表操作和方法
python列表操作和方法
23 1
|
1月前
|
存储 索引 Python
反转Python列表的4种方法
反转Python列表的4种方法
|
1月前
|
Python
深入解析 Python 中的对象创建与初始化:__new__ 与 __init__ 方法
深入解析 Python 中的对象创建与初始化:__new__ 与 __init__ 方法
17 1
|
26天前
|
Linux Python
Python获得本机本地ip地址的方法
【10月更文挑战第8天】 socket模块包含了丰富的函数和方法,可以获取主机的ip地址,例如gethostbyname方法可以根据主机名获取ip地址,gethostbyname_ex方法可以获得本机所有ip地址列表,也可以使用netifaces模块获取网卡信息。
25 0