一文看懂:搭建活动分析体系

简介: 要问互联网上啥最吸引人,当然是活动啦!各种优惠让人眼花缭乱,以至于很多人专门游走于各个平台“薅羊毛”。活动只是互联网运营一部分工作,却是最烧钱,最吸引眼球,最让人纠结的一部分。今天就简单分享一下:活动分析该怎么做。

一、什么是活动


活动,特指:在常规销售以外,企业额外投入资源奖励用户的动作。比如一家服装店,一件衣服100元。我们花100买一件衣服,这是常规销售。如果某天,这个商店挂个牌子:本周内全场衣服8折。我们只花了80元买衣服,这就是参与了活动。



昨天冬至,网上还有一个关于活动的段子:


image.png


虽然例子很简单,但是可以清晰看出:活动的本质是以质换量。通过小恩小惠来吸引用户,刺激用户消费更多。活动的效果,都是叠加在常规销售之上实现的增量。


互联网上的活动形式,会远比实体店复杂。常见的有四种:


  • 商品类活动:针对某个商品做优惠。比如商品打折、买一送一等等。


  • 用户类活动:针对某类用户发福利。比如新用户注册送100元抵用券,累计消费满10000元可升级为钻石级会员享受专属礼品。


  • 产品类活动:针对某些APP/小程序使用行为做奖励。比如APP连续签到7天可得礼品,观看直播参与互动可抽奖等


  • 品牌类活动:针对品牌传播行为的奖励。比如用户关注品牌的公众号可以领福利。


不管是那种行为,都是给奖励,换用户的动作。只是商品类、用户类活动,更功利一些,会鼓动用户多消费。产品和品牌活动则更软性,大有“赔钱赚吆喝”的感觉。


那么,如何对活动进行分析呢?


二、如何分析一个活动


活动有3大关键要素:


  • 叠加于常规销售


  • 额外投入资源


  • 产生额外增量


基于这三点,活动分析要清楚这三方面内容:


  • 常规的销售数据是什么?


  • 针对哪个问题,额外投入资源


  • 投入以后,产生了多大效果


还拿开头的服装店举例,想要分析“本周内全场8折”活动,则需要:


  • 了解没有打折的时候,一周卖多少件,多少钱


  • 监控打折期间内,一周卖多少件,多少钱


  • 对比打折/非打折时期,销售差异


注意,并非所有的活动都能产生增量。比如下表所示,打折期间销量还跌了。实际上,如果活动没有达到“四两拨千斤”的效果,则很有可能亏钱。这也是为啥活动分析特别重要的原因。


image.png


只是,并非所有活动,都是为了提升销量的,不同类型的活动要分开看。


三、不同类型,重点不同


商品类活动,在商品不同生命周期目标不一样:


  • 孵化阶段:提高市场知名度(关注信息的人数)
  • 上市阶段:快速占领市场(销售数量/购买人数)
  • 成熟阶段:赚取利润(商品利润)
  • 退市阶段:库存清理(避免积压)


如下图所示


image.png


用户类活动,则要根据用户状况:


  • 在业务扩张期:多获取新用户/鼓励用户转介绍
  • 在业务稳定期:注重用户活跃/用户转化
  • 在业务衰退期:注重用户留存


如下图所示


image.png


产品类活动,则要看具体引导目标。


  • 引导用户完成一次交易?
  • 引导用户进入直播间?
  • 引导用户连续登录?


指哪打哪的效果,在产品类活动更明显(如下图)


image.png



品牌类活动,则要看:在哪个平台进行传播。不同平台,衡量传播效果的手段,指标都不太一样(因为涉及好多种平台,这里不细说了,回来单独分享)。


这么多类型,是不是把小伙伴看晕了?晕了那就对了。因为这一块正是活动分析的最大难点。

四、活动分析难点


活动分析的难点,根本就不是数据计算太过复杂,而是:


  • 同时间活动太多,相互重叠
  • 活动目标不清晰,甚至没有目标
  • 活动目标太多,指望“毕其功于一役”

这些问题,常常是源自运营/营销/产品等部门的管理混乱。并非所有公司,都有清晰的管理。很多公司的运营,都是:


  • “这个活动去年做过,所以今年继续做……”
  • “这个活动领导很喜欢,所以我要赶紧做……”
  • “这个活动投了那么多钱,必须在方方面面都有效!”


image.png


这样浑浑噩噩,浑水摸鱼式的工作方式,导致很多活动在上线时,没有清晰的分类,没有明确的目标,甚至连过程监控都没有做。一个用户,能叠加享受好几重优惠,在规则上全无限制。这样等到活动结束,数据根本就是一坨烂泥。想在烂泥里再把水和土分出来,已经不可能了。


由于小熊妹本人,刚刚被双十一、双十二两个大活动的监控、复盘蹂躏过。所以对活动不清晰这件事真是恨得咬牙切齿(是滴,我司就是那个,因为双十一投入力度很大,所以必须方方面面都证明丫很牛逼,哪怕改数据口径也在所不惜的……)。

相关文章
|
6月前
|
弹性计算 人工智能 安全
带你读《从基础到应用云上安全航行指南》——阿里云产品专家教你如何全方位构建ECS安全体系(3)
带你读《从基础到应用云上安全航行指南》——阿里云产品专家教你如何全方位构建ECS安全体系(3)
469 0
|
6月前
|
弹性计算 安全 网络安全
带你读《从基础到应用云上安全航行指南》——阿里云产品专家教你如何全方位构建ECS安全体系(2)
带你读《从基础到应用云上安全航行指南》——阿里云产品专家教你如何全方位构建ECS安全体系(2)
539 0
|
3月前
|
监控 搜索推荐 数据可视化
数据指标体系搭建方法及经验
在当今数据驱动的商业环境中,构建一个有效的数据指标体系成为了企业成功的关键。数据指标体系是一套精心设计的测量工具,用于评估和指导企业的业务活动。通过这个体系,企业能够转化庞大、复杂的数据为有价值的洞察,从而指导决策,优化运营,增强竞争力。
数据指标体系搭建方法及经验
|
4月前
|
人工智能 安全 数据管理
数据平台演进问题之为什么需要提升用户参与数据管理的程度
数据平台演进问题之为什么需要提升用户参与数据管理的程度
|
5月前
|
存储 小程序 前端开发
用云开发快速制作客户业务需求收集小程序丨实战
用云开发快速制作客户业务需求收集小程序丨实战
|
6月前
|
监控 API
营销活动方案怎么设计
营销活动方案怎么设计
|
存储 弹性计算 运维
如何从用户视角搭建可观测体系?阿里云ECS业务团队的设计思路
本文以阿里云ECS业务为例,探讨阿里云最核心、亚太地区业务规模最大的产品之一,在极高的稳定性和性能要求下,如何基于云构建可观测性并从客户视角建立观测能力,以及在推进体系建设中的成功经验和待改进之处。
如何从用户视角搭建可观测体系?阿里云ECS业务团队的设计思路
|
6月前
|
弹性计算 安全 网络安全
带你读《从基础到应用云上安全航行指南》——阿里云产品专家教你如何全方位构建ECS安全体系(1)
带你读《从基础到应用云上安全航行指南》——阿里云产品专家教你如何全方位构建ECS安全体系(1)
473 0
|
运维 监控 BI
企业综合运维监控项目经典案例
对服务器、网络设备等IT设施提供全面的故障和性能管理,通过设置相应的性能阀值和告警通知方式,当设备发生异常时能及时通过邮件和短信通知到管理员,减少故障修复时间
442 0
企业综合运维监控项目经典案例
|
存储 人工智能 监控
【MarTech参考架构】Credera的MarTech参考架构第5部分:营销自动化和活动管理
【MarTech参考架构】Credera的MarTech参考架构第5部分:营销自动化和活动管理