第一步:定场景
首先,不要空泛地讲“APP分析要看XXX指标”,这样很容易挂掉。因为APP的种类太多了,不同的APP功能不一样,看的指标肯定也有差异。因此最好的办法是明确一个具体的APP,锁定问题场景,再具体聊,就不容易翻车了。
此时可以:
- 掏出手机,指着一个电商/社交/短视频/外卖/打车APP
- 事先下载好面试企业的APP
- 指着自己前公司的APP
然后说:我们以这个为例进行分析。总之对着一个具体地说,会容易很多。
第二步:明指标
有了具体场景以后,可以明确:该场景下待分析的数据指标。数据指标是分析的基础,先定指标,再谈分类维度,再谈怎么分析。
而常见的场景下,分析指标是固定的:
- 产品分析:DAU、MAU、活跃率、活跃时长、主路径转化率
- 销售分析:销量额、销量利润、购买客户数、购买转化率
- 商品分析:库存量、销售量、动销率、库存周转时间
……
因此只要有具体场景,就能很容易地找出关键指标,进行分析。如果对常用指标不熟悉,可以参考之前发的哦:大合集!互联网行业常用数据分析指标
注意,本案例中,面试官问的是APP分析,APP包含了很多方面,完全展开内容特别多,可以先给个框架,然后挑一个方面深入。比如电商类APP,可以先看活跃用户、消费用户、GMV几个核心指标。
第三步:看规律
定了数据指标以后,先挑重点指标,把发展趋势线画出来。比如产品分析,可以假设产品的DAU走势图如下,然后主动告诉面试官:通过观察DAU的走势,可以发现:
- 是否有周期性变化规律
- 重大活动影响
- 发展趋势向好/向坏
(如下图)
这一步分析,为后边深入分析打个基础。这里可以利用九大数据分析方法中的周期性分析法,参见之前的分享哦。九大数据分析方法之:周期性分析法
第四步:找异常
在第三步中,我们给出了正常的规律,相应的,也能通过数据监控,发现异常情况。从而锁定要深入分析的问题点(如下图)
这样先画个形状,再讨论是否有问题的做法,能让面试很轻松。有的人略过这一环,说完指标,直接就说:“如果活跃率低了,我要拆解XXX进行分析”,这样很容易被面试官挑战:“你怎么知道低了就是异常呢?”
万一是数据错了呢?万一是正常波动呢?万一是轻微波动呢?万一是周期性波动呢?这些质疑,都能通过一张图轻松化解。结合图形,还能显示我们懂周期性分析法,会寻找波动规律,一举两得。
第五步:查原因
发现了异常以后,可以深入查原因。最简单的方法就是结构分析法+指标拆解法。对问题进行拆解,找到问题发生点。这里不一定穷尽所有可能性拆解,可以把主要的分类维度列清楚,让面试官看到思路即可。面对面试的开放性问题,这么回答已经足够了(如下图)。
小结
经过这五步,回答已经很完善了,记得答完以后总结一下:“以上五个步骤,就是我们从0开始分析一款XX类APP的过程。这样即使一开始不了解该App,也能一步步摸出数据规律,发现问题。” 如果面试官不挑剔的话,就能混过关啦!
注意事项
注意事项1:定场景阶段,不要找复杂业务场景。有些APP看着操作简单,背后的业务却很复杂,比如外卖APP,站在用户角度,只是下单点个外卖。可其后,还包含了订票、出行、骑车各种业务,还有平台方、商家的业务,复杂得很。讲这种复杂的例子,很容易翻车。所以推荐用业务简单一些的,直营类卖东西的APP/小程序(比如我个人很喜欢的X黑鸭商城)这样翻车概率小很多。
注意事项2:活动类问题,把“看规律”换成“设目标”。上边例子,是以App为例,App运营是日常工作,因此有很长时间的连续性数据。还有些工作不是日常工作,而是阶段性的。比如促销活动,比如广告投放。
此时,可以把第三步“看规律”换成“设目标”,一般阶段性活动、推广,都有明确的目标。比如获取XX名新人,增加XX万销售。定好目标以后,就能通过实际数据和目标的差异,推进到第四步找异常上边。有些人不注意这一点,面试的时候没讲目标,就blabla讲了一堆指标。面试官反问一句:“你凭什么说活动不好?”就把丫问蒙了。目标很重要,一定要提前订好。
以上就是面试时找思路的基本做法。喜欢的话,可以点赞+转发+在看,三连支持下小熊妹哦。可能还有小伙伴会疑惑:有时候面试官会问一个很具体的问题,比如“我们的DAU下降了10%,可能是什么原因?”这时候相当于场景、指标已经被定死了,该怎么回答才不显得外行呢?我们下一篇来分享吧。