3分钟,看回归分析模型怎么做

简介: 总有小伙伴想看分析模型,我们就从最简单的回归分析模型讲起。回归分析是所有分析模型里最浅显,最容易懂的,并且回归分析有很多变化形态,能适用于很多问题场景。今天就一起来看一下。

一、为什么叫回归?


回归翻译自:regression,最初是统计学家们,关注到:孩子的身高总会向平均身高靠近,即使父母都很高,孩子也不会无限长高下去。从这些研究里,总结出回归分析方法(regression,还有一个意思是:退化,可以说很形象了)。


所以,这里的“回归”只是一个习惯称呼,和业务部门口中的“回归初心”“回归原点”一毛钱关系都没有!在讨论问题的时候,业务部门最喜欢扯“回归”,做数据的小伙伴们,千万别被绕进去了!!!


二、回归模型有什么用?


回归模型是用来做:预测的。


在数据分析里,预测分两种:


  • 连续型预测:比如预计销售额是3550万,预测客户15万,预测结果是一个连续型数字。


  • 分类预测:比如预计用户接电话/不接电话,预计新品上市后是A级/B级/C级,预测结果不是一个连续型数字,而是一个分类结果。


大部分回归分析模型都是连续型预测(逻辑回归除外)。今天就从最简单的,只有一个变量的简单线性回归分析讲起。


三、如何进行回归分析


做回归分析有五步:


  • 第一步:确认是否是预测问题
  • 第二步:确认要预测的因变量,影响预测结果的自变量
  • 第三步:收集数据,检验数据间关系
  • 第四步:计算模型,检验结果
  • 第五步:进行预测


看个具体问题场景:某公司在新品上市前,会提前进行宣传,并进行预约。虽然最终上市以后,并非只有预约用户买,但是如果能通过预约人数,预测销售情况,就能提前预判商品会不会受欢迎,从而把控库存情况。具体数据如下表。



image.png


拿到问题后,一步步来:


第一步:该场景需要的是预测,要预测的是销售额,是一个连续型变量。


第二步:确认因变量,自变量。该问题中:


  • 因变量(要预测的):销售额


  • 自变量(影响预测结果的):预约人数


没有其他变量了。


拿到数据后,可初步判断两个指标是否有关系,是何种关系,从而选择合适的模型。判断关系,最简单快捷的方法就是:散点图。因此拿到数据以后,可以先做散点图。如上图所示,因变量和自变量之间看起来是有明显线性关系的,因此可以用线性回归来做。


第三步:收集数据,题目已帮忙收集好了,进入下一步。


第四步:进行计算。简单的线性回归,用excel→数据分析→回归即可计算(如下图)


image.png


至于模型解读,略为复杂,我们慢慢看哦


四、模型计算与解读


回归分析的模型解读略显复杂,并且包含了大量假设检验的知识,这里先不探讨其复杂原理,给个最简单的判断原则,小伙伴们抄起来能用即可。


模型解读,分为三个部分:


  • 模型本身预测准不准。主要看R平方(如下图蓝色


  • 模型整体是否有效。主要看F检验的结果(如下图橙色


  • 模型里,每个因变量的检验结果(如下图绿色


image.png


从上图可以看出,本次建模的三个检验结果全部通过,表明模型可用。


这次建模只有一个自变量+一个常数项,因此最终模型就是y=60+5x。常数项和自变量的数值,参见下图黄色部分


image.png


五、回归分析模型应用


有了回归模型,我们就能预测未来情况啦。比如有一款新品,预约人数为4.5万人,则可以代入模型,预测销量为60+5*4.5=82.5万,商品部门就能据此备货了。


六、回归分析局限性


没有模型是万能的,回归分析突出弱点有两个:


  • 回归不等于因果!不等于因果!不等于因果!回归模型只能从数据上说明:两个变量存在关系,但是实际上有没有关系,得看具体业务情况。因此千万不要乱用。


  • 模型检验可能难以通过。为了演示方便,本文选择的数据非常漂亮,做出来三项检测全部通过,但实际情况会很复杂,出现各种检测不通过的情况,因此也衍生出更多、更复杂的知识点,这个我们后边慢慢分享。


实际上,本文仅仅是开了个头,回归分析有更多应用方式,比如用来预测用户响应/不响应的逻辑回归、用来预测时间走势的时间序列自回归等,小伙伴们先理解了回归分析基本概念,我们再深入哦,喜欢的话,记得转发+在看+点赞,三连,支持下小熊妹,谢谢大家。

相关文章
|
6月前
|
机器学习/深度学习 算法
大模型开发:解释随机森林算法以及它是如何做出决策的。
随机森林是集成学习方法,利用多棵决策树提升性能。通过随机抽样和特征选择创建弱分类器,减少模型相关性。每个决策树基于子数据集和特征子集构建,预测时集成所有决策树结果,分类问题采用投票,回归问题取平均值。这种方法降低过拟合风险,提高准确性和稳定性,对噪声和异常值容忍度高,广泛应用。
87 0
|
3月前
|
机器学习/深度学习 算法
【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)
本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。
271 1
|
25天前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
51 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
WK
|
2月前
|
机器学习/深度学习 算法 数据挖掘
逻辑回归是如何工作的
逻辑回归是一种广泛应用的统计方法,尤其适合二分类问题。尽管名称含“回归”,但它实际上是通过线性组合输入特征,并利用Sigmoid函数将结果映射到0到1之间的概率值,从而进行分类。训练过程中,通过最大化似然函数或最小化损失函数(如交叉熵)来优化模型参数。此外,逻辑回归还可通过One-Vs-All等策略扩展至多分类问题。该方法计算效率高、可解释性强,在信用评估、医疗诊断、舆情分析等领域有着广泛的应用。
WK
33 0
|
3月前
|
存储 机器学习/深度学习 缓存
【数据挖掘】XGBoost面试题:与GBDT的区别?为什么使用泰勒二阶展开?为什么可以并行训练?为什么快?防止过拟合的方法?如何处理缺失值?
XGBoost与GBDT的区别、XGBoost使用泰勒二阶展开的原因、并行训练的原理、速度优势、防止过拟合的策略以及处理缺失值的方法,突出了XGBoost在提升模型性能和训练效率方面的一系列优化。
128 1
|
3月前
|
机器学习/深度学习 算法
【机器学习】简单解释贝叶斯公式和朴素贝叶斯分类?(面试回答)
简要解释了贝叶斯公式及其在朴素贝叶斯分类算法中的应用,包括算法的基本原理和步骤。
72 1
|
6月前
|
资源调度
回归方程优良性评价(原理+实践+代码)
回归方程优良性评价(原理+实践+代码)
回归方程优良性评价(原理+实践+代码)
|
6月前
|
数据可视化
【Eviews实战】——多元线性回归模型的建立(二)
【Eviews实战】——多元线性回归模型的建立(二)
|
6月前
|
存储 资源调度 数据可视化
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
|
6月前
|
数据可视化
【Eviews实战】——多元线性回归模型的建立(一)
【Eviews实战】——多元线性回归模型的建立(一)