高并发系统数据幂等的技术尝试

简介:

前言介绍

在系统开发过程中,经常遇到数据重复插入、重复更新、消息重发发送等等问题,因为应用系统的复杂逻辑以及网络交互存在的不确定性,会导致这一重复现象,但是有些逻辑是需要有幂等特性的,否则造成的后果会比较严重,例如订单重复创建,这时候带来的问题可是非同一般啊。


什么是系统的幂等性

幂等是数据中得一个概念,表示N次变换和1次变换的结果相同。


高并发的系统如何保证幂等性

查询API

查询的API,可以说是天然的幂等性,因为你查询一次和查询两次,对于系统来讲,没有任何数据的变更,所以,查询一次和查询多次一样的。


MVCC方案

多版本并发控制,update with condition,更新带条件,这也是在系统设计的时候,合理的选择乐观锁,通过version或者其他条件,来做乐观锁,这样保证更新及时在并发的情况下,也不会有太大的问题。 例如update table_xxx set name=#name#,version=version+1 where version=#version# ,或者是 update table_xxx set quality=quality-#subQuality# where quality-#subQuality# >= 0 。


单独的去重表

如果涉及到的去重的地方特别多,例如ERP系统中有各种各样的业务单据,每一种业务单据都需要去重,这时候,可以单独搞一张去重表,在插入数据的时候,插入去重表,利用数据库的唯一索引特性,保证唯一的逻辑。


分布式锁

还是拿插入数据的例子,如果是分布是系统,构建唯一索引比较困难,例如唯一性的字段没法确定,这时候可以引入分布式锁,通过第三方的系统,在业务系统插入数据或者更新数据,获取分布式锁,然后做操作,之后释放锁,这样其实是把多线程并发的锁的思路,引入多多个系统,也就是分布式系统中得解决思路。


###删除数据> 删除数据,仅仅第一次删除是真正的操作数据,第二次甚至第三次删除,直接返回成功,这样保证了幂等。


###插入数据的唯一索引> 插入数据的唯一性,可以通过业务主键来进行约束,例如一个特定的业务场景,三个字段肯定确定唯一性,那么,可以在数据库表添加唯一索引来进行标示。 这里有一个场景,API层面的幂等,例如提交数据,如何控制重复提交,这里可以在提交数据的form表单或者客户端软件,增加一个唯一标示,然后服务端,根据这个UUID来进行去重,这样就能比较好的做到API层面的唯一标示。


###状态机幂等 > 在设计单据相关的业务,或者是任务相关的业务,肯定会涉及到状态机,就是业务单据上面有个状态,状态在不同的情况下会发生变更,一般情况下存在有限状态机,这时候,如果状态机已经处于下一个状态,这时候来了一个上一个状态的变更,理论上是不能够变更的,这样的话,保证了有限状态机的幂等。


目录
相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
|
4月前
|
消息中间件 算法 数据库
架构设计篇问题之商城系统高并发写的问题如何解决
架构设计篇问题之商城系统高并发写的问题如何解决
|
14天前
|
缓存 负载均衡 API
抖音抖店API请求获取宝贝详情数据、原价、销量、主图等参数可支持高并发调用接入演示
这是一个使用Python编写的示例代码,用于从抖音抖店API获取商品详情,包括原价、销量和主图等信息。示例展示了如何构建请求、处理响应及提取所需数据。针对高并发场景,建议采用缓存、限流、负载均衡、异步处理及代码优化等策略,以提升性能和稳定性。
|
2月前
|
消息中间件 存储 负载均衡
高并发流量杀手锏:揭秘秒杀系统背后的削峰技术!
本文介绍了秒杀场景下的“削峰填谷”策略,通过消息队列缓冲用户请求,避免高并发对系统造成冲击。文中详细解释了消息队列的工作原理及如何通过预扣减库存和分布式锁确保数据一致性,同时还提出了合理的消息队列配置、高可用性及数据库负载均衡等最佳实践。通过这些技术手段,可有效提升系统的稳定性和用户体验。
104 8
高并发流量杀手锏:揭秘秒杀系统背后的削峰技术!
|
5月前
|
缓存 NoSQL Java
Java高并发实战:利用线程池和Redis实现高效数据入库
Java高并发实战:利用线程池和Redis实现高效数据入库
477 0
|
23天前
|
Java Go 云计算
Go语言在云计算和高并发系统中的卓越表现
【10月更文挑战第10天】Go语言在云计算和高并发系统中的卓越表现
|
3月前
|
缓存 监控 安全
揭秘高并发神话背后:打造坚不可摧的秒杀系统,技术大牛必修课!
【8月更文挑战第29天】在设计高并发、高可用的分布式秒杀系统时,需关注系统架构、数据库设计、缓存策略、并发控制、降级限流及安全防护。采用微服务架构并通过API网关和负载均衡器通信;数据库设计需考虑分库分表与读写分离;利用Redis缓存热点数据;采用限流算法和排队机制控制并发;实施IP限流和验证码验证保障安全。以下为简化代码示例,展示如何在秒杀服务中实现预扣减库存和订单创建逻辑。此外,还需进行性能测试与优化,并设置监控和日志记录机制,确保系统稳定可靠。
72 1
|
3月前
|
Java Spring 开发者
Spring 框架配置属性绑定大比拼:@Value 与 @ConfigurationProperties,谁才是真正的王者?
【8月更文挑战第31天】Spring 框架提供 `@Value` 和 `@ConfigurationProperties` 两种配置属性绑定方式。`@Value` 简单直接,适用于简单场景,但处理复杂配置时略显不足。`@ConfigurationProperties` 则以类级别绑定配置,简化代码并更好组织配置信息。本文通过示例对比两者特点,帮助开发者根据具体需求选择合适的绑定方式,实现高效且易维护的配置管理。
50 0
|
3月前
|
存储 监控 固态存储
【性能突破】揭秘!如何让您的数据库在高并发风暴中稳如磐石——一场关于WAL写入性能优化的实战之旅,不容错过的技术盛宴!
【8月更文挑战第21天】在高并发环境下,数据库面临极大挑战,特别是采用Write-Ahead Logging (WAL)的日志机制。本文通过一个在线交易系统的案例,分析了WAL写入性能瓶颈,并提出优化方案:理解WAL流程;分析磁盘I/O瓶颈、缓冲区设置与同步策略;通过增大WAL缓冲区、使用SSD及调整同步策略来优化;最后通过测试验证改进效果,总结出一套综合优化方法。
59 0
|
3月前
|
监控 算法 Java
企业应用面临高并发等挑战,优化Java后台系统性能至关重要
随着互联网技术的发展,企业应用面临高并发等挑战,优化Java后台系统性能至关重要。本文提供三大技巧:1)优化JVM,如选用合适版本(如OpenJDK 11)、调整参数(如使用G1垃圾收集器)及监控性能;2)优化代码与算法,减少对象创建、合理使用集合及采用高效算法(如快速排序);3)数据库优化,包括索引、查询及分页策略改进,全面提升系统效能。
45 0