JMeter 插件 Ultimate Thread Group 完成梯度递增场景的压测

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: 前面几篇文章已经介绍完一个电商从注册登录到购物下单的典型场景的 Jmeter压测脚本,具体可参考前期文章:基于电商模式的性能测试(五)-基于Jmeter完成一次日常典型电商场景的压测(下单-支付)。在实际压测前,我们还需要对场景做适当的调整。从 ThreadGroup中看,我们的 Thread会在某个时间点同时起多个,而日常场景中我们需要的可能是一个递增的梯度加压的方式。为了实现梯度

前面几篇文章已经介绍完一个电商从注册登录到购物下单的典型场景的 Jmeter压测脚本,具体可参考前期文章:基于电商模式的性能测试(五)-基于Jmeter完成一次日常典型电商场景的压测(下单-支付)。
在实际压测前,我们还需要对场景做适当的调整。
从 ThreadGroup中看,我们的 Thread会在某个时间点同时起多个,而日常场景中我们需要的可能是一个递增的梯度加压的方式。

为了实现梯度递增,我们就需要借助于插件 UltimateThreadGroup
先看下 UltimateThreadGroup插件的面板信息,如下:

  • 参数解释:
  • StartThreadsCount:当前行启动的线程总数
  • InitialDelay/sec:延时启动当前行的线程,单位:秒
  • StartupTime/sec:启动当前行所有线程达峰值所需时间,单位:秒
  • HoldLoadFor/sec:当前行线程达到峰值后的稳定加载时间,单位:秒
  • ShutdownTime:停止当前行所有线程所需时间,单位:秒
  • 文字的描述还是稍显晦涩, UltimateThreadGroup插件有个很好的地方就是下方的图表,它会根据你的设定而展示出趋势图,那么现在我们设定如下参数:
  • StartThreadsCount:100
  • InitialDelay/sec:10秒
  • StartupTime/sec:200秒:100秒
  • ShutdownTime:10秒

从插件的趋势图我们可以看到在延迟10秒后100个线程在200秒时间内逐步从0递增至,然后持续100秒的时间,最后在10秒的时间内有逐步从100递减到0。
当然你还可以继续添加 ThreadSchedule,趋势图会帮你绘制出综合的线程运行趋势:

1) 选择插件 UltimateThreadGroup

2)将写好的Jmeter脚本整体移至 UltimateThreadGroup下

3)现在我们需要的场景是:

  • 开始我们需要在60秒的时间内起是10个thread,然后保持运行
  • 接着我们继续在60秒的时间内再起10个thread,然后和开始的10个线程一起保持运行100秒后结束

具体设置如下:

1)命令启动,实际运行脚本期间会用命令行的方式,减少客户端自身运行性能造成的测试影响
1.$ jmeter
-
n
-
t
RegisterLogin
.
jmx
2)在grafana中查看运行数据

从数据中简单的分析,可以看到:
线程数在设定的120秒时间内均匀的从0递增至20

错误率在38分30秒的时候出现剧增,而这个时候的线程数为5,说明在 ActiveUser达到5的时候系统出现了问题造成错误率陡增。

从错误率和响应时间来看,结果较差的接口主要集中在下单流程这块,而首页的响应时间也很大,很可能是因为首页相关的表数据是和订单的表数据有关联的,因而订单的响应时间增加也会造成首页的耗时增加。

  • 插件添加后在如下位置选择

打开后的面板如下:

现在可以设置当平均响应时间大于200ms持续10秒,平均延迟时间大于300ms持续10秒或者错误率大于1%持续5秒时测试停止。

可以看到当我们的响应时间持续10秒超过200ms时,测试自动停止了。
总结
客户端方面的电商压测实战学习暂时到这里了,后面如果还想继续深入学习就需要关注服务端的指标了,依然可以结合 docker+grafana+prometheus的方式来监控服务端的各项指标进行分析。

关于更多服务端性能监控与分析接口自动化测试,这里推荐霍格沃兹测试学院出品的 《测试开发从入门到高级实战》系统进阶班课程。可能是业界最具深度、最贴近大厂一线实践的测试开发课程。

4 个月由浅入深,强化集训,测试大咖思寒领衔亲授,通过 8+ 企业级项目实战演练,带你一站式掌握 BAT 测试开发工程师必备核心技能(对标阿里巴巴P6+,挑战年薪50W+)!学员直推 BAT 名企测试经理,普遍涨薪 50%+!

往期回顾

  • 实战 | JMeter 典型电商场景(下单/支付)的性能压测
  • 实战 | 基于JMeter 完成典型电商场景(首页浏览)的性能压测
  • 实战 | Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台
  • 实战 | 电商业务性能测试(二): Jmeter 参数化功能实现注册登录的数据驱动
  • 实战 | 电商业务的性能测试(一): 必备基础知识

原文链接

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
5月前
|
缓存 Java 测试技术
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
使用JMeter对项目各个接口进行压力测试,并对前端进行动静分离优化,优化三级分类查询接口的性能
143 10
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
|
6月前
|
存储 监控 数据可视化
性能监控之JMeter分布式压测轻量日志解决方案
【8月更文挑战第11天】性能监控之JMeter分布式压测轻量日志解决方案
124 0
性能监控之JMeter分布式压测轻量日志解决方案
|
9月前
|
监控 数据可视化 测试技术
性能工具之JMeter+InfluxDB+Grafana打造压测可视化实时监控
【5月更文挑战第23天】性能工具之JMeter+InfluxDB+Grafana打造压测可视化实时监控
690 6
性能工具之JMeter+InfluxDB+Grafana打造压测可视化实时监控
|
7月前
|
测试技术 Linux
linux 服务器运行jmeter 进行服务性能压测
linux 服务器运行jmeter 进行服务性能压测
497 0
|
8月前
|
JSON Java 测试技术
必知的技术知识:Jmeter压测工具使用手册(完整版)
必知的技术知识:Jmeter压测工具使用手册(完整版)
|
9月前
|
JSON JavaScript Java
性能工具之Jmeter压测Thrift RPC服务
【5月更文挑战第21天】性能工具之Jmeter压测Thrift RPC服务
144 1
|
8月前
|
监控 数据可视化 Java
掌握 JMeter 插件管理器:提升性能测试的利器
Apache JMeter 是一款强大的性能测试工具,其灵活性和扩展性使其在性能测试领域广受欢迎。JMeter 插件管理器(JMeter Plugins Manager)为用户提供了一个方便的平台来安装、更新和管理各种插件,从而大大扩展了 JMeter 的功能。
|
8月前
|
测试技术 Linux Apache
掌握JMeter参数化技巧:通过CSV文件实现高效登录压测
在本文中,我们将探讨如何使用 Apache JMeter 通过 CSV 数据文件进行登录性能测试参数化。首先创建一个包含用户名和密码的 `users.csv` 文件。接着在 JMeter 中,创建测试计划,添加线程组,配置 CSV 数据集,设置文件路径、编码及变量名。然后,创建 HTTP 请求并添加参数,使用 `${username}` 和 `${password}` 引用 CSV 中的数据。最后,添加监听器如查看结果树和聚合报告以分析测试结果。通过这种方法,能更有效地模拟真实用户行为,提高测试覆盖率,助力性能瓶颈的发现和优化。
|
4月前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
【10月更文挑战第1天】Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
200 3
|
5月前
|
测试技术 数据库 UED
Python 性能测试进阶之路:JMeter 与 Locust 的强强联合,解锁性能极限
【9月更文挑战第9天】在数字化时代,确保软件系统在高并发场景下的稳定性至关重要。Python 为此提供了丰富的性能测试工具,如 JMeter 和 Locust。JMeter 可模拟复杂请求场景,而 Locust 则能更灵活地模拟真实用户行为。结合两者优势,可全面评估系统性能并优化瓶颈。例如,在电商网站促销期间,通过 JMeter 模拟大量登录请求并用 Locust 模拟用户浏览和购物行为,可有效识别并解决性能问题,从而提升系统稳定性和用户体验。这种组合为性能测试开辟了新道路,助力应对复杂挑战。
149 2