阿里云机器学习平台PAI论文入选国际顶会ASPLOS 2022

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 近日,阿里云机器学习PAI主导的论文《机器学习访存密集计算编译优化框架AStitch》入选国际顶会ASPLOS 2022,论文通过编译优化的手段来自动化地提高机器学习任务的执行效率。此次入选意味着阿里云机器学习平台PAI自研的深度学习编译优化系统达到了全球业界先进水平,获得了国际学者的认可,展现了中国机器学习系统技术创新在国际上的竞争力。

近日,阿里云机器学习PAI主导的论文《机器学习访存密集计算编译优化框架AStitch》入选国际顶会ASPLOS 2022,论文通过编译优化的手段来自动化地提高机器学习任务的执行效率。此次入选意味着阿里云机器学习平台PAI自研的深度学习编译优化系统达到了全球业界先进水平,获得了国际学者的认可,展现了中国机器学习系统技术创新在国际上的竞争力。

ASPLOS是计算机系统领域的顶级国际会议,涉及体系结构、编程语言和操作系统等多个方向,尤其重视不同方向之间的交叉,该会议曾推动了多核处理器、虚拟化、RAIDRISC、深度学习处理器等计算机系统领域的核心创新,在学术和工业界都有巨大的影响力。

访存密集型的计算已经成为当今流行的机器学习模型的一个性能瓶颈;然而,业界先进的工作中(TVMXLA等),由于其自动生成代码的能力有限,难以针对复杂的访存密集算子子图进行高效的代码生成。

针对这一问题,AStitch提出了一种大粒度计算融合的编译优化手段,通过计算图的依赖关系特性、GPU多层次存储架构上的数据局部性、以及不同数据尺寸之下的线程并发性等三个方面的联合考虑,自动化地为大粒度的复杂访存密集算子子图生成高效的GPU代码,从而大幅减少GPU kernel调用及框架层算子调度的额外开销,避免不必要的重复计算,大幅减少片外访存,同时适配各种数据尺寸以得到最佳并行效率。对比XLAAStitch最高可以取得2.73倍的性能加速。

AStitch技术已经集成在阿里云机器学习PAI的编译优化引擎中,为阿里巴巴集团内部广泛的机器学习模型带来了性能加速,在集团内部GPU集群上,AStitch每周可以为数万的机器学习任务节省总计20000小时以上的GPU使用时长。

阿里云机器学习PAI已经被广泛应用于各行各业,实现企业自主可控的AI方案,全面提升机器学习工程效率。


了解更多论文内容,请点击:https://dl.acm.org/doi/10.1145/3503222.3507723

大数据&AI开源项目合集:https://www.aliyun.com/activity/bigdata/opensource_bigdata__ai


相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
3天前
|
机器学习/深度学习 人工智能 开发者
DeepSeek安装部署指南,基于阿里云PAI零代码,小白也能轻松搞定!
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括:开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程简单快捷,极大降低了使用门槛。
|
1天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
509 2
阿里云PAI部署DeepSeek及调用
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
9月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
271 14
|
9月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
162 1
|
9月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
9月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
402 0
|
9月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
1106 0

相关产品

  • 人工智能平台 PAI